FORMULAS FOR REFERENCE

SPHERE	Surface area		$4\pi r^2$
*	Volume		$\frac{4}{3}\pi r^3$
CYLINDER	Area of curved surface	_	$2\pi rh$
	Volume	=	$\pi r^2 h$
CONE	Area of curved surface	=	$\pi r l$
	Volume	=	$\frac{1}{3}\pi r^2 h$
PRISM	Volume	=	base area × height
PYRAMID	Volume	=	$\frac{1}{3}$ × base area × height

-1-

There are 36 questions in Section A and 18 questions in Section B. The diagrams in this paper are not necessarily drawn to scale. Choose the best answer for each question.

Section A

$$1. \qquad \frac{2^{2n} \cdot 9^n}{3^n} =$$

A.
$$6^{2n}$$

B.
$$6^{3n}$$

C.
$$12^n$$
.

D.
$$12^{2n}$$
.

2. If
$$x = \frac{y-2x}{2y}$$
, then $y =$

A.
$$\frac{2x}{1-2x}$$

$$B. \qquad \frac{2x}{2x-1}$$

$$C. \qquad \frac{1-2x}{2x}$$

D.
$$\frac{2x-1}{2x}$$

- 3. If $f(x) = x^2 x + 1$, then f(x + 1) f(x) =
 - A. 0.
 - B. 2.
 - C. 2x.
 - D. 4x.
- $4. \qquad \sqrt{25a} \sqrt{4a} =$
 - A. $3\sqrt{a}$.
 - B. $7\sqrt{a}$.
 - C. $21\sqrt{a}$.
 - D. $\sqrt{21a}$.
- 5. In the figure, the graph of $y = 2x^2 4x + c$ passes through the point (1, k). Find the value of k.
 - A. -5
 - B. -4
 - C. -3
 - D. -2

- 6. If the equation $4x^2 + kx + 9 = 0$ has equal positive roots, then k =
 - A. -6.
 - B. 6.
 - C. -12.
 - D. 12.
- 7. Solve x(x-6) = x.
 - A. x = 6
 - B. x = 7
 - C. x = 0 or x = 6
 - D. x = 0 or x = 7
- 8. If $\begin{cases} pq + 2q = 10 \\ 4p + q = 14 \end{cases}$, then q = 1
 - A. 2.
 - B. 3
 - C. $\frac{-3}{2}$ or 3.
 - D. 2 or 20.

- 9. The solution of -2x < 3 x or 3x + 3 > 0 is
 - A. x > -3.
 - B. x > -1.
 - C. -3 < x < -1.
 - D. x < -3 or x > -1.
- 10. If $a(2x-x^2) + b(2x^2-x) \equiv -5x^2 + 4x$, then a =
 - A. -1.
 - B. 1.
 - C. –2.
 - D. 2.
- 11. Let a_n be the *n*th term of an arithmetic sequence. If $a_1 = 10$ and $a_2 = 13$, then $a_{21} + a_{22} + \cdots + a_{30} =$
 - A. 765.
 - B. 835.
 - C. 865.
 - D. 1605.

- 12. The marked price of a book is 20% above the cost. If the book is sold at a 10% discount on the marked price, then the percentage profit is
 - A. 2%.
 - B. 8%.
 - C. 10%.
 - D. 18%.
- 13. If (a-b):(b-2a)=2:3, then a:b=
 - A. 3:5.
 - B. 5:3.
 - C. 5:7.
 - D. 7:5.
- 14. A box contains two kinds of coins: \$ 5 and \$ 2. The ratio of the number of \$ 5 coins to the number of \$ 2 coins is 4:5. If the total value of the coins is \$ 90, then the total number of coins in the box is
 - A. 9
 - B. 18.
 - C. 27.
 - D. 36.

- 15. The scale of a map is $1:20\ 000$. If two buildings are $3.8\ cm$ apart on the map, then the actual distance between the two buildings is
 - A. 0.076 km.
 - B. 0.76 km.
 - C. 7.6 km.
 - D. 76 km.
- 16. It is known that y varies partly as x and partly as \sqrt{x} . When x = 1, y = 4 and when x = 4, y = 10. Find y when x = 16.
 - A. 28
 - B. 52
 - C. 80
 - D. 256
- 17. In the figure, ABCD is a parallelogram and E is a point on AD such that AE: ED=1:3. If the area of $\triangle ABE$ is 3 cm^2 , then the area of the shaded region is
 - A. 9 cm^2 .
 - B. 15 cm^2 .
 - C. 21 cm^2 .
 - D. 24 cm^2 .

- 18. In the figure, AD and BC meet at E. If CE : EB = 3 : 1, then area of $\triangle ABD$: area of $\triangle CDE =$
 - A. 1:1.
 - B. 1:3.
 - C. 2:3.
 - D. 4:9.

- 19. If the area of a regular 10-sided polygon is 123 cm², find the length of the side of the 10-sided polygon. Give the answer correct to the nearest 0.1 cm.
 - A. 3.9 cm
 - B. 4.0 cm
 - C. 6.8 cm
 - D. 8.0 cm
- 20. For $0^{\circ} \le x \le 90^{\circ}$, the least value of $\frac{4}{2 \cos x}$ is
 - A. 0.
 - B. 1.
 - C. 2
 - D. 4.

- 21. In the figure, find AC correct to 2 decimal places.
 - A. 5.04
 - B. 9.17
 - C. 11.14
 - D. 15.62

- 22. In the figure, $\sin x =$
 - A. $\frac{4}{3}$.
 - B. $\frac{3}{4}$
 - C. $\frac{3}{5}$
 - D. $\frac{4}{5}$

- 5
- 23. In the figure, O is the centre of the circle ABCD. If EAB and EDOC are straight lines and EA = AO, find $\angle AEO$.

- B. 24°
- C. 27°
- D. 36°

- 24. In the figure, O is the centre of the circle ABC. Find x.
 - A. 17.5°
 - B. 27.5°
 - C. 35°
 - D. 55°

- 25. In the figure, ABCD is a circle. AC and BD meet at E . If AD=4, AE=2, EC=5 and BE=4, then BC=
 - A. 6.
 - B. 7.
 - C. 8.
 - D. 10.

- 26. In the figure, ABC is a circle. If $\angle ABC = 30^{\circ}$ and $\widehat{AC} = 4$, then the circumference of the circle is
 - A. 24.
 - B. 48.
 - C. 8π .
 - D. 16π .

- 27. In the figure, ABC is a straight line. If BD // CE, then $\angle DCE =$
 - A. 56°.
 - B. 68°.
 - C. 112°.
 - D. 124°.

- 28. In the figure, ABCD and AGFE are straight lines. If BC = 2 cm, CD = 3 cm, BG = 6 cm and CF = 10 cm, then DE =
 - A. 12 cm.
 - B. 14 cm.
 - C. 15 cm.
 - D. 16 cm.

29. If a > 0, b > 0 and c < 0, which of the following may represent the graph of the straight line ax + by + c = 0?

A.

B.

C.

D.

- 30. In the figure, L_1 and L_2 are two straight lines intersecting at a point on the y-axis. If the equation of L_1 is x+2y-2=0, then the equation of L_2 is
 - A. 2x y + 1 = 0.
 - B. 2x y 2 = 0
 - C. 2x + y + 1 = 0.
 - D. 2x + y 2 = 0.

- 31. If (-2, 3) is the mid-point of (a, -1) and (4, b), then b =
 - A. -7.
 - B. 7.
 - C. -8.
 - D. 8.
- 32. The mean weight of 36 boys and 32 girls is 46 kg. If the mean weight of the boys is 52 kg, then the mean weight of the girls is
 - A. 39.25 kg.
 - B. 40 kg.
 - C. 40.67 kg.
 - D. 49 kg.
- 33. A bag contains 3 red balls and 4 green balls. If two balls are drawn randomly from the bag one by one without replacement, then the probability that the two balls are of different colours is
 - A. $\frac{2}{7}$
 - B. $\frac{4}{7}$.
 - C. $\frac{12}{49}$.
 - D. $\frac{24}{49}$

- 34. Peter and May each throws a dart. The probability of Peter's hitting the target is 0.2. The probability of May's hitting the target is 0.3. Find the probability of at least one dart hitting the target.
 - A. 0.38
 - B. 0.44
 - C. 0.5
 - D. 0.56
- 35. The pie chart below shows the expenditure of a student in March 2004. If the student spent \$520 on meals, then the student's total expenditure on entertainment and clothing was
 - A. \$780.
 - B. \$1092.
 - C. \$1352.
 - D. \$1872.

- 36. David got 70 marks in a test and his standard score was -0.625. If the standard deviation of the test marks was 8 marks, then the mean mark of the test was
 - A. 62 marks.
 - B. 65 marks.
 - C. 75 marks.
 - D. 78 marks.

Section B

$$37. \qquad \frac{\frac{3}{x} - \frac{2}{y}}{\frac{4x}{y} - \frac{9y}{x}} =$$

A.
$$\frac{1}{2x-3y}$$
.

$$B. \qquad \frac{1}{2x+3y}$$

$$C. \qquad \frac{-1}{2x - 3y}$$

$$D. \qquad \frac{-1}{2x+3y}$$

38. The L.C.M. of 2-b, $4-b^2$ and $8-b^3$ is

A.
$$(2-b)(2+b)(4-4b+b^2)$$
.

B.
$$(2-b)(2+b)(4+4b+b^2)$$
.

C.
$$(2-b)(2+b)(4-2b+b^2)$$
.

D.
$$(2-b)(2+b)(4+2b+b^2)$$
.

- 15 -

39. If
$$5 = 10^a$$
 and $7 = 10^b$, then $\log \frac{7}{50} =$

A.
$$b-a-1$$
.

B.
$$b - a + 1$$
.

C.
$$\frac{b}{a}$$

D.
$$\frac{b}{a+1}$$

40. If
$$f(x) = x^3 - 7x + 6$$
 is divisible by $x^2 - 3x + k$, then $k = 4$

- A. –2.
- B. 2.
- C. -3.
- D. 3.
- 41. It is known that the equation $2x^3 = 12x 9$ has only one root in the interval $-3 \le x \le -2$. The method of bisection is used to find the root starting with the interval $-3 \le x \le -2$. After the first approximation, the interval which contains the root becomes $-3 \le x \le -2.5$. Find the interval which contains the root after the third approximation.

A.
$$-2.625 \le x \le -2.5$$

B.
$$-2.75 \le x \le -2.625$$

C.
$$-2.875 \le x \le -2.75$$

D.
$$-3 \le x \le -2.875$$

- 42. If $\alpha \neq \beta$ and $\begin{cases} \alpha^2 = 4\alpha + 3 \\ \beta^2 = 4\beta + 3 \end{cases}$, then $(\alpha + 1)(\beta + 1) = \beta$
 - A. -6
 - B. 0
 - C. 2.
 - D. 8.
- Which of the following shaded regions may represent the solution of $x \le y-2$?

A.

B.

C.

D.

- 44. If 81, a, b, 3 is a geometric sequence, then b a =
 - A. -18.
 - B. 18.
 - C. –26.
 - D. 26.

45. In the figure, OAB is a sector. The perimeter and the area of the sector are x cm and y cm² respectively. If x = y, then $\widehat{AB} = 0$

D. $\frac{10\pi}{3}$ cm.

$$46. \qquad \frac{\cos\theta - \frac{1}{\cos\theta}}{\sin\theta} =$$

- A. $-\tan\theta$.
- B. $\tan \theta$.
- C. $\frac{-\sin^3\theta}{\cos\theta}$
- D. $\frac{\cos\theta 1}{\sin\theta\cos\theta}$

- 47. If $A + B = \pi$, which of the following must be true?
 - I. $\sin A = \sin B$
 - II. $\cos A = \sin B$
 - III. $\cos A = \cos B$
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only

- 48. The figure shows the cube ABCDEFGH of side 2 cm. X and Y are the mid-points of AB and GH respectively. Find XY.
 - A. 3 cm
 - B. $2\sqrt{2}$ cm
 - C. $\sqrt{5}$ cm
 - D. $\sqrt{6}$ cm

- 49. In the figure, ABCDEFGH is a rectangular block. EG and FH meet at X. M is the mid-point of EH. Which of the following makes the greatest angle with the plane ABCD?
 - A. AG
 - B. AH
 - C. AM
 - D. AX

50. In the figure, ABCD is a circle. If $\widehat{CD} = 2\widehat{DA} = 2\widehat{AB} = 2\widehat{BC}$, then x = 0

- B. 112°.
- C. 120°.
- D. 144°.

- 51. In the figure, TS, SQ and QP are tangents to the circle at T, R and P respectively. If TS // PQ, TS=3 and QP=12, then the radius of the circle is
 - A. 4.5.
 - B. 6.
 - C. 7.5.
 - D. 9.

- 52. If the straight line x+y-3=0 divides the circle $x^2+y^2+2x-ky-4=0$ into two equal parts, then k=
 - A. -4.
 - B. 4.
 - C. -8.
 - D. 8.

- 53. The equation of a circle is $x^2 + y^2 4x + 2y + 1 = 0$. Which of the following is/are true?
 - I. The circle touches the y-axis.
 - II. The origin lies outside the circle.
 - III. The centre of the circle lies in the second quadrant.
 - A. II only
 - B. III only
 - C. I and II only
 - D. I and III only

- 54. The mean deviation of the four numbers x-8, x-2, x+3 and x+7 is
 - A. x.
 - B. 0.
 - C. 5.
 - D. 5.6.