2005-CE MATH
PAPER 2
all c

HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY
HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 2005

MATHEMATICS PAPER 2

11.15 am - 12.45 pm (1½ hours)

Subject Code 180

- 1. Read carefully the instructions on the Answer Sheet and insert the information required (including the Subject Code) in the spaces provided.
- 2. When told to open this book, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
- All questions carry equal marks.
- 4. **ANSWER ALL QUESTIONS.** You should mark all your answers on the Answer Sheet.
- 5. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 6. No marks will be deducted for wrong answers.

©香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2005

2005-CE-MATH 2-1

FORMULAS FOR REFERENCE

SPHERE	Surface area	=	$4\pi r^2$
	Volume	=	$\frac{4}{3}\pi r^3$
CYLINDER	Area of curved surface	=	$2\pi rh$
	Volume	=	$\pi r^2 h$
CONE	Area of curved surface	=	$\pi r l$
	Volume	=	$\frac{1}{3}\pi r^2 h$
PRISM	Volume	=	base area × height
PYRAMID	Volume		$\frac{1}{3}$ × base area × height

There are 36 questions in Section A and 18 questions in Section B. The diagrams in this paper are not necessarily drawn to scale. Choose the best answer for each question.

Section A

1.
$$a \cdot a (a+a) =$$

A.
$$a^4$$

B.
$$2a^3$$
.

C.
$$a^3 + a$$
.

D.
$$3a^2 + a$$

2. If
$$a = 1 - 2b$$
, then $b =$

A.
$$\frac{a-1}{2}$$

B.
$$\frac{a+1}{2}$$
.

$$C. \qquad \frac{-1-a}{2}$$

D.
$$\frac{1-a}{2}$$

- 3. If $f(x) = 2x^2 3x + 4$, then f(1) f(-1) =
 - А. -6.
 - B. -2.
 - C. 2.
 - D. 6.
- 4. $(2x-3)(x^2+3x-2) \equiv$
 - A. $2x^3 + 3x^2 + 5x 6$.
 - B. $2x^3 + 3x^2 + 5x + 6$.
 - C. $2x^3 + 3x^2 13x 6$.
 - D. $2x^3 + 3x^2 13x + 6$.
- 5. In the figure, the area of the trapezium is 12 cm^2 . Which of the following equations can be used to find x?
 - A. x(x+2) = 12
 - B. x(x+2) = 24
 - C. $x^2 x(x-2) = 12$
 - D. $x^2 x(x-2) = 24$

- 6. The figure shows the graph of $y = ax^2 + x + b$. Which of the following is true?
 - A. a > 0 and b < 0
 - B. a > 0 and b > 0
 - C. a < 0 and b < 0
 - D. a < 0 and b > 0

- 7. If $\begin{cases} \beta = \alpha^2 3 \\ \beta = 4\alpha 3 \end{cases}$, then $\beta =$
 - A. 4
 - B. 13.
 - C. 0 or 4.
 - D. -3 or 13.

- 8. If the quadratic equation $kx^2 + 6x + (6 k) = 0$ has equal roots, then k = 0
 - A. -6.
 - В. –3.
 - C. 3.
 - D. 6.

- 9. The solution of 2(3-x) > -4 is
 - A. x < 5.
 - B. x > 5.
 - C. x < 10.
 - D. x > 10.
- 10. If $x^2 + 2ax + 8 = (x+a)^2 + b$, then b =
 - A. 8.
 - B. $a^2 + 8$.
 - C. $a^2 8$.
 - D. $8-a^2$.
- 11. If the 2nd term and the 5th term of a geometric sequence are -3 and 192 respectively, then the common ratio of the sequence is
 - A. –8.
 - B. -4.
 - C. 4.
 - D. 8.

- 12. Peter sold two flats for \$ 999 999 each. He lost 10% on one and gained 10% on the other. After the two transactions, Peter
 - A. gained \$ 10 101.
 - B. gained \$ 20 202.
 - C. lost \$ 10 101.
 - D. lost \$ 20 202.
- 13. Let x and y be non-zero numbers. If 2x-3y=0, then (x+3y):(x+2y)=
 - A. 3:2.
 - B. 4:3.
 - C. 9:7.
 - D. 11:8.
- 14. If z varies directly as y^2 and inversely as x, which of the following must be constant?
 - A. xy^2z
 - B. $\frac{y^2z}{x}$
 - C. $\frac{xz}{y^2}$
 - D. $\frac{z}{xy^2}$

15. In the figure, the bearing of P from Q is

- C. N 63° W.
- D. S 63° E.

16. In the figure, ABCD is a rhombus and CDE is an equilateral triangle. If ADE is a straight line, then the area of the quadrilateral ABCE is

A.
$$2\sqrt{3}$$
 cm².

B.
$$3\sqrt{3}$$
 cm²

C.
$$4\sqrt{3}$$
 cm²

D.
$$6\sqrt{3} \text{ cm}^2$$

17. The figure shows a solid right circular cone of height 5 cm and slant height 13 cm. Find the total surface area of the cone.

-7-

A.
$$144\pi \text{ cm}^2$$

B.
$$156\pi \text{ cm}^2$$

C.
$$240\pi \text{ cm}^2$$

D.
$$300\pi \text{ cm}^2$$

18. The figure shows a right triangular prism. Find the volume of the prism.

$$C. 36\sqrt{3} cm^3$$

D.
$$72\sqrt{3} \text{ cm}^3$$

19. In the figure, OAB is a sector of radius 2 cm. If the length of \widehat{AB} is 3π cm, then the area of the sector OAB is

A.
$$\frac{3\pi}{2}$$
 cm².

B.
$$3\pi$$
 cm².

$$C. 4\pi cm^2.$$

D.
$$6\pi$$
 cm².

20. For $0^{\circ} \le \theta \le 90^{\circ}$, the greatest value of $\frac{5 - \sin \theta}{4 + \sin \theta}$ is

A.
$$\frac{4}{5}$$

C.
$$\frac{5}{4}$$

- 21. In the figure, θ is an acute angle. Find θ correct to the nearest degree.
 - A. 35°
 - B. 50°
 - C. 56°
 - D. 57°

- 22. In the figure, $\cos \theta =$
 - A. $\frac{1}{8}$
 - B. $\frac{1}{4}$
 - C. $\frac{7}{8}$
 - D. $\frac{7}{4}$

- 23. In the figure, ABCD is a rectangle. If BED is a straight line, then the area of ΔABE is
 - A. $\frac{\sqrt{3}}{6}$ cm².
 - $B. \qquad \frac{\sqrt{3}}{2} cm^2 .$
 - $C. \qquad \frac{2\sqrt{3}}{3} \, \text{cm}^2$
 - D. $\sqrt{3}$ cm².

- 4. In the figure, ABCD is a circle. AB produced and DC produced meet at E. If AC and BD intersect at F, then $\angle ABD =$
 - A. 41°.
 - B. 52°.
 - C. 56°.
 - D. 60°.

- 25. In the figure, ABCD is a circle. If AC is a diameter of the circle and AB = BD, then $\angle CAD =$
 - A. 18°.
 - B. 21°.
 - C. 27°.
 - D. 36°.

- 26. If AC = BD and AB // DC, how many pairs of similar triangles are there in the figure?
 - A. 2 pairs
 - B. 3 pairs
 - C. 4 pairs
 - D. 5 pairs

- 27. In the figure, ABCD is a square. If CEF is an equilateral triangle, then $\angle CBF =$
 - $A. 45^{\circ}$.
 - B. 50°.
 - C. 60°.
 - D. 80°.

- 28. In the figure, x =
 - A. 50°.
 - B. 60°.
 - C. 70°.
 - D. 90°.

- 29. In the figure, OABC and OFED are straight lines. If AB:BC=2:3 and FA:DC=1:5, then OA:AB=
 - A. 1:1.
 - B. 1:2.
 - C. 5:8.
 - D. 5:13.

- 30. In the figure, the length of the line segment joining A and F is
 - A. $\sqrt{68}$.
 - B. $\sqrt{77}$
 - C. $\sqrt{82}$.
 - D. $\sqrt{85}$.

- 31. A(2, 5) and B(6, -3) are two points. If P is a point lying on the straight line x = y such that AP = PB, then the coordinates of P are
 - A. (-2, -2).
 - B. (-2, 4).
 - C. (1, 1).
 - D. (4, 1).

- 32. In the figure, ABCD is a parallelogram. The coordinates of B are
 - A. (3, 2).
 - B. (3, 5).
 - C. (4, 5).
 - D. (4, 6).

- 33. If the equation of the straight line L is x-2y+3=0, then the equation of the straight line passing through the point (2,-1) and perpendicular to L is
 - A. x + 2y + 3 = 0.
 - B. x + 2y 3 = 0.
 - C. 2x + y + 3 = 0.
 - D. 2x + y 3 = 0.
- 34. If the mean of five numbers 15, x + 4, x + 1, 2x 7 and x 3 is 6, then the mode of the five numbers is
 - A. 1.
 - B. 4.
 - C. 5.
 - D. 15.

- 35. Bag X contains 1 white ball and 3 red balls while bag Y contains 3 yellow balls and 6 red balls. A ball is randomly drawn from bag X and put into bag Y. If a ball is now randomly drawn from bag Y, then the probability that the ball drawn is red is
 - A. $\frac{1}{2}$
 - B. $\frac{2}{3}$
 - C. $\frac{21}{40}$.
 - D. $\frac{27}{40}$

- 36. If a fair die is thrown three times, then the probability that the three numbers thrown are all different is
 - A. $\frac{5}{9}$
 - B. $\frac{17}{18}$
 - C. $\frac{125}{216}$
 - D. $\frac{215}{216}$

Section B

- 37. If *n* is a positive integer, then $\frac{1}{1+2\sqrt{n}} \frac{1}{1-2\sqrt{n}} =$
 - A. $\frac{4\sqrt{n}}{1-4n}$
 - B. $\frac{-4\sqrt{n}}{1+4n}$
 - $C. \qquad \frac{4\sqrt{n}}{4n+1}$
 - $D. \qquad \frac{4\sqrt{n}}{4n-1}$

- 38. The H.C.F. of $x^2(x+1)(x+2)$ and $x(x+1)^3$ is
 - A. x(x+1).
 - B. x(x+1)(x+2).
 - $C. x^2(x+1)^3.$
 - D. $x^2(x+1)^3(x+2)$.

- 39. If a and b are positive integers, then $\log(a^b b^a) =$
 - A. $ab \log (ab)$.
 - B. $ab (\log a)(\log b)$.
 - C. $(a+b)\log(a+b)$.
 - D. $b \log a + a \log b$.
- 40. Let k be a positive integer. When $x^{2k+1} + kx + k$ is divided by x+1, the remainder is
 - A. -1.
 - B. 1.
 - C. 2k-1.
 - D. 2k+1.
- 41. Which of the regions in the figure may represent the solution of

$$\begin{cases} x \le 2 \\ x + y \ge 2 \end{cases} ?$$
$$(x - y \ge 0)$$

- A. Region I
- B. Region II
- C. Region III
- D. Region IV

- 42. If four arithmetic means are inserted between 12 and 27, then the sum of the four arithmetic means is
 - A. 78.
 - B. 90.
 - C. 105.
 - D. 117.

43. In the figure, ACE and BDF are straight lines. If the areas of the quadrilaterals ABDC and CDFE are 16 cm^2 and 5 cm^2 respectively, then the length of AB is

- 17 -

- A. 4.5 cm.
- B. 5 cm.
- C. 5.5 cm.
- D. 6 cm.

- 44. For $0^{\circ} \le x \le 360^{\circ}$, how many distinct roots does the equation $\cos x (\sin x 1) = 0$ have?
 - A. 2
 - B. 3
 - C. 4
 - D. 5

- 45. $\sin(90^{\circ} x) + \cos(x + 180^{\circ}) =$
 - A. 0.
 - B. $-2\cos x$.
 - C. $\sin x + \cos x$.
 - D. $\sin x \cos x$.

- 46. $\sin^2 1^\circ + \sin^2 3^\circ + \sin^2 5^\circ + \dots + \sin^2 87^\circ + \sin^2 89^\circ =$
 - A. 22.
 - B. 22.5.
 - C. 44.5.
 - D. 45.

- 47. In the figure, B, C and D are three points on a horizontal plane such that $\angle CBD = 90^{\circ}$. If AB is a vertical pole, then $\angle BCD =$
 - A. 15°.
 - B. 30°.
 - C. 45°.
 - D. 60°.

- 48. In the figure, VABCD is a right pyramid with a square base. If the angle between VA and the base is 45° , then $\angle AVB =$
 - A. 45°.
 - B. 60°.
 - C. 75°.
 - D. 90°.

- 49. In the figure, AB and AC are tangents to the circle at X and Y respectively. Z is a point lying on the circle. If $\angle BAC = 100^{\circ}$, then $\angle XZY =$
 - A. 40°.
 - B. 45°.
 - C. 50°.
 - D. 55°.

- 50. In the figure, O is the centre of the circle and AOC is a straight line. If AB and BC are tangents to the circle such that AB = 3 and BC = 4, then the radius of the circle is
 - A. $\frac{3}{2}$.
 - B. $\frac{12}{7}$.
 - C. 2.
 - D. $\frac{5}{2}$.

- 51. In the figure, ABCD is a circle. If $\widehat{AB}:\widehat{BC}:\widehat{CD}:\widehat{DA}=1:2:3:3$ and E is a point lying on BD, then $\angle CAE=$
 - A. 45°.
 - B. 50°.
 - C. 55°.
 - D. 60°.

- 52. In the figure, ABCD is a parallelogram. E, F and G are points lying on BC, CD and DA respectively. AE and AF divide $\angle BAD$ into three equal parts and BG bisects $\angle ABC$. If AE and AF intersect BG at H and I respectively, then $\angle GIF + \angle GHE =$
 - A. 120°.
 - B. 150°.
 - $C. \qquad 180^o \ .$
 - D. 210° .

2005-CE-MATH 2-22

- In the figure, O is the origin. If the equation of the circle passing through O, A, B and C is $(x+3)^2 + (y-4)^2 = 25$, then the area of the rectangle OABC is
 - A. 36.
 - B. 48.
 - C. 50.
 - D. 64.

54. In the figure, the circle passing through A(0, 8) and B(0, 2) touches the positive x-axis. The equation of the circle is

A.
$$x^2 + y^2 - 8x - 10y + 16 = 0$$
.

B.
$$x^2 + y^2 + 8x + 10y + 16 = 0$$
.

C.
$$x^2 + y^2 - 10x - 10y + 16 = 0$$
.

D.
$$x^2 + y^2 + 10x + 10y + 16 = 0$$
.

2005-CE-MATH 2-23