### 香港考試局 HONG KONG EXAMINATIONS AUTHORITY

# 一九九七年香港中學會考 HONG KONG CERTIFICATE OF EDUCATION EXAMINATION, 1997

### 數學 試卷— MATHEMATICS PAPER I



本評卷參考乃考試局專爲今年本科考試而編寫,供閱卷員參考之用。閱卷員在完成閱卷工作後,若將本評卷參考提供其任教會考班的本科同事參閱,本局不表反對,但須切記,在任何情況下均不得容許本評卷參考落入學生手中。學生若索閱或求取此等文件,閱卷員/教師應嚴詞拒絕,因學生極可能將評卷參考視爲標準答案,以致但知硬背死記,活剝生吞。這種落伍的學習態度,既不符現代教育原則,亦有違考試着重理解能力與運用技巧之旨。因此,本局籲請各閱卷員/教師通力合作,堅守上述原則。

This marking scheme has been prepared by the Hong Kong Examinations Authority for markers' reference. The Examinations Authority has no objection to markers sharing it, after the completion of marking, with colleagues who are teaching the subject. However, under no circumstances should it be given to students because they are likely to regard it as a set of model answers. Markers/teachers should therefore firmly resist students' requests for access to this document. Our examinations emphasise the testing of understanding, the practical application of knowledge and the use of processing skills. Hence the use of model answers, or anything else which encourages rote memorisation, should be considered outmoded and pedagogically unsound. The Examinations Authority is counting on the co-operation of markers/teachers in this regard.

考試結束後,各科評卷參考將存放於教師中心,供教師參閱。

After the examinations, marking schemes will be available for reference at the Teachers' Centres.



© 香港考試局 保留版權 Hong Kong Examinations Authority All Rights Reserved 1997

## Hong Kong Certificate of Education Examination **Mathematics Paper I**

#### NOTES FOR MARKERS

- It is very important that all markers should adhere as closely as possible to the marking 1. scheme. In many cases, however, candidates will have obtained a correct answer by an alternative method not specified in the marking scheme. In general, a correct answer merits all the marks allocated to that part, provided that the method used is sound.
- 2. In a question consisting of several parts each depending on the previous parts, marks may be awarded to steps or methods correctly deduced from previous erroneous answers. However, marks for the corresponding answers should NOT be awarded. In the marking scheme, marks are classified as:

'M' marks awarded for correct methods being used;

'A' marks awarded for the accuracy of the answers;

awarded for correctly completing a proof or arriving at Others

an answer given in a question.

- Use of notation different from those in the marking scheme should not be penalised. 3.
- Each mark deducted for poor presentation (p.p.) should be denoted by [pp-1]: 4.
  - At most deduct 1 mark for (p.p.) in each question, up to a maximum of 3 marks for the whole paper.
  - For similar (p.p.), deduct 1 mark for the first time that it occurs. b. i.e. do not penalise candidates twice in the paper for the same p.p.
- Each Mark deducted for wrong/no unit (u.) should be denoted by [u-1]: 5.
  - No mark can be deducted for (u.) in Section A. a.
  - At most deduct 1 mark for (u.) for the whole paper. b.
- Marks entered in the Page Total Box should be the NET total scored on that page. 6.

|         | Solution                                                                                                                   |                                                                                                                                                                                                                                  | Marks           | Remarks                                                        |
|---------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------|
| 1. (a)  | $x^2 - 9 = (x - 3)(x + 3)$                                                                                                 |                                                                                                                                                                                                                                  | 2A              |                                                                |
| (b)     | ac + bc - ad - bd = (a+b)c - (a+b)d $= (a+b)(c-d)$                                                                         |                                                                                                                                                                                                                                  | 1A<br>1A<br>(4) |                                                                |
| 2. (a)  | $\sqrt{27} - \sqrt{12} = 3\sqrt{3} - 2\sqrt{3}$ $= \sqrt{3}$                                                               |                                                                                                                                                                                                                                  | 1A<br>1A        | For simplifying either term                                    |
|         | $\frac{1}{2\sqrt{3}+\sqrt{2}} = \frac{2\sqrt{3}-\sqrt{2}}{(2\sqrt{3}+\sqrt{2})(2\sqrt{3}-\sqrt{2})}$                       |                                                                                                                                                                                                                                  | 1A ·            |                                                                |
|         | $= \frac{2\sqrt{3} - \sqrt{2}}{(2\sqrt{3})^2 - (\sqrt{2})^2}$ $= \frac{2\sqrt{3} - \sqrt{2}}{10}$ (or $\frac{\sqrt{3}}{5}$ | $-\frac{\sqrt{2}}{10}$ , $\frac{\sqrt{2}(\sqrt{6}-1)}{10}$ )                                                                                                                                                                     | 1A<br>1A        | can be omitted                                                 |
|         | 10                                                                                                                         | 10 10 10 10 10 10 10 10 10 10 10 10 10 1                                                                                                                                                                                         | (5)             | 1                                                              |
| 3. (a)  | $\frac{x^3y^2}{x^{-3}y} = x^{3-(-3)}y^{2-1}$                                                                               |                                                                                                                                                                                                                                  | 1M              | For applying $a^m a^n = a^{m+n}$ ,                             |
|         | $= x^6 y$                                                                                                                  |                                                                                                                                                                                                                                  | 1A              | $\frac{a^m}{a^n} = a^{m-n} \text{ or } \frac{1}{a^n} = a^{-n}$ |
| (b)     | $\frac{\log 8 + \log 4}{\log 16} = \frac{\log 2^3 + \log 2^2}{\log 2^4}$                                                   |                                                                                                                                                                                                                                  | 1M              | For expressing the numbers as powers of a common number        |
|         | $= \frac{3 \log 2 + 2 \log 2}{4 \log 2}$                                                                                   |                                                                                                                                                                                                                                  | 1M              | For applying $\log a^n = n \log a$                             |
|         | $\frac{OR}{\log 8 + \log 4} = \frac{\log 32}{\log 16}$                                                                     | erikan di kacamatan di kacamatan<br>Kacamatan di kacamatan di kacama |                 |                                                                |
|         | $= \frac{\log 2^5}{\log 2^4}$ $= 5 \log 2$                                                                                 |                                                                                                                                                                                                                                  | 1M              |                                                                |
|         | 4 log 2                                                                                                                    |                                                                                                                                                                                                                                  | 1M              |                                                                |
|         | $=\frac{5}{4}$ (or 1.25)                                                                                                   | 5)                                                                                                                                                                                                                               | (5)             |                                                                |
|         |                                                                                                                            |                                                                                                                                                                                                                                  |                 |                                                                |
|         |                                                                                                                            |                                                                                                                                                                                                                                  |                 |                                                                |
|         |                                                                                                                            |                                                                                                                                                                                                                                  |                 |                                                                |
| 97-CE-M | ATHS I-3                                                                                                                   |                                                                                                                                                                                                                                  |                 |                                                                |

|    |          |                                                                | S                                            | Solution                                    | ***                                     |       | Marks                 | Remarks                           |
|----|----------|----------------------------------------------------------------|----------------------------------------------|---------------------------------------------|-----------------------------------------|-------|-----------------------|-----------------------------------|
| Î  | Note: I1 | n question 4,<br>re provided.                                  | accept graphical solw<br>Withhold 1 mark for | utions if no algebrai<br>having equal signs | c expressions as an<br>in inequalities. | swers |                       |                                   |
| 4. |          | $2x - 17 > 0$ $x > \frac{17}{2}$                               |                                              |                                             |                                         |       | 1A                    |                                   |
| ž  | (ii)     | $x^{2} - 16x + 6$ $(x - 7)(x - 9)$ $x < 7 \text{ or } x \ge 3$ | $\Theta > 0$                                 |                                             |                                         |       | 1A<br>2A              | For factorization, can be omitted |
|    | The      | range of value $x > 9$                                         | $ext{ues of } x 	ext{ which satis}$          | fy both the inequality                      | ties in (i) and (ii):                   | :     | 1A (5)                |                                   |
| 5. |          |                                                                | A                                            | D                                           |                                         |       |                       |                                   |
|    |          |                                                                | 3<br>B                                       | 60°<br>C                                    |                                         |       |                       |                                   |
|    | (a)      | <i>AC</i> = 5                                                  | · · · · · · · · · · · · · · · · · · ·        |                                             |                                         |       | 1A                    |                                   |
|    | (b)      |                                                                | (6.557)                                      | )°)                                         |                                         | 194 s | 1M<br>1A              | For the cosine rule r.t. 5.57     |
|    | (c)      | Area of $\Delta A$                                             | $ACD = \frac{1}{2}(5)(6)\sin 60$             | 90                                          |                                         |       | 1M                    |                                   |
|    |          |                                                                | $=\frac{15}{2}\sqrt{3}$                      | (or 13.0)                                   |                                         |       | 1A(5)                 | r.t. 13.0                         |
|    |          |                                                                |                                              |                                             |                                         |       |                       |                                   |
|    |          |                                                                |                                              |                                             |                                         |       |                       |                                   |
|    |          |                                                                |                                              |                                             |                                         |       | nation ed in a line a |                                   |

|    |              | Solution                                                                                                                                                                                                     |                                       | Marks           | Remarks       |           |
|----|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------|---------------|-----------|
| 6. |              | A 140°                                                                                                                                                                                                       |                                       |                 |               |           |
|    |              | L 110° 20 km                                                                                                                                                                                                 |                                       |                 |               |           |
|    | (a)          | $\angle LAB = 180^{\circ} - 140^{\circ} + 20^{\circ} = 60^{\circ}$<br>$\therefore \angle ALB = 110^{\circ} - 20^{\circ} = 90^{\circ}$<br>$\therefore \triangle ALB$ is right-angled at $L$                   | (or $\angle LBA = 30^{\circ}$ )       | 1A              |               |           |
|    |              | $LB = 20 \sin 60^{\circ} \text{ km}$ $= 10\sqrt{3} \text{ km}$                                                                                                                                               | ( or 17.3 km)                         | 1M<br>1A        | r.t. 17.3     |           |
|    | (b)          | $\angle ABL = 30^{\circ}$<br>Let $\phi$ be the bearing of $L$ from $B$ .<br>Then $\phi = 360^{\circ} - 30^{\circ} - 40^{\circ} = 290^{\circ}$<br>$\therefore$ The bearing of $L$ from $B$ is $290^{\circ}$ . | (or N70°W)                            | 1M<br>1A<br>(5) |               |           |
| 7. | (a)          | The height of the smaller cone: the he = 2:3                                                                                                                                                                 | ight of the larger cone               | 1A              |               |           |
|    | (b)          | Total surface area of the smaller cone: = 4:9                                                                                                                                                                | total surface area of the larger cone | 1M              |               |           |
|    |              | The cost of painting the larger cone = \$ = \$                                                                                                                                                               | •                                     | 1M<br>1A        |               |           |
|    |              | <b>—</b> ф                                                                                                                                                                                                   |                                       | (4)             | ÷.            |           |
| 8. | (a)          | $\alpha + \beta = \frac{7}{2}$                                                                                                                                                                               |                                       | 1A              |               | <b>\$</b> |
|    | <b>(b)</b> . | $\alpha\beta = 2$ $(\alpha + 2) + (\beta + 2) = (\alpha + \beta) + 4$                                                                                                                                        |                                       | 1A              |               |           |
|    |              | $(\alpha + 2) + (\beta + 2) = (\alpha + \beta) + 4$ $= \frac{7}{2} + 4$ $= \frac{15}{2}$                                                                                                                     |                                       | 1A              |               |           |
|    |              | $(\alpha+2)(\beta+2) = \alpha\beta + 2(\alpha+\beta) + 4$                                                                                                                                                    |                                       |                 |               |           |
|    |              | $= (2) + 2(\frac{7}{2}) + 4$ $= 13$                                                                                                                                                                          |                                       | IM<br>IA        |               |           |
|    |              | $\therefore  \text{The required equation is}  2x^2 - 15x$                                                                                                                                                    | c+26=0                                | 1A<br>(6)       | Or equivalent |           |
|    |              |                                                                                                                                                                                                              |                                       |                 |               |           |

| *                                     |     | Solution                                                                                                                                                                                                                                                                              | Marks                | Remarks                                                                          |
|---------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------|
| 9.                                    |     | $A \longrightarrow A \subset B$                                                                                                                                                                                                                                                       |                      |                                                                                  |
|                                       | (a) |                                                                                                                                                                                                                                                                                       | 1A<br>1A             | can be omitted                                                                   |
|                                       | (b) | $ \stackrel{\frown}{AB}: \stackrel{\frown}{BC} = 60: 30 $ $ = 2: 1 $                                                                                                                                                                                                                  | 1A                   | Accept 2                                                                         |
| * * * * * * * * * * * * * * * * * * * | (c) | $AB:BC = 4\cos 30^{\circ}: 4\sin 30^{\circ}$ (or $\tan 60^{\circ}$ )<br>= $\sqrt{3}:1$ (or $1.73:1, 1:0.577$ )                                                                                                                                                                        | 1M<br>1A<br>—(6)     | For finding $AB$ and $BC$ Accept $\sqrt{3}$ etc. Numerical ans. r.t. 1.73, 0.577 |
| 10.                                   | (a) | Population at the end of $1998 = 300000(1+2\%)^2$<br>= $312120$                                                                                                                                                                                                                       | 1A<br>1A             | r.t. 312 000                                                                     |
|                                       |     | OR Population at the end of $1997 = 300\ 000(1+2\%) = 306\ 000$ Population at the end of $1998 = 306\ 000(1+2\%) = 312\ 120$                                                                                                                                                          | 1M+1A                | r.t. 312000                                                                      |
|                                       | (b) | If $300000(1+2\%)^n = 330000$ ,<br>then $1.02^n = 1.1$<br>$n \log 1.02 = \log 1.1$<br>$n \approx 4.81$<br>$\therefore$ The population will exceed 330 000 at the end of 2001.                                                                                                         | 1A<br>1M<br>1A<br>1A | Accept $n=5$                                                                     |
| Tanta<br>Tanta                        | · . | OR Population at the end of $1999 = 300\ 000(1+2\%)^3 \approx 318\ 362$ Population at the end of $2000 = 300\ 000(1+2\%)^4 \approx 324\ 730$ Population at the end of $2001 = 300\ 000(1+2\%)^5 \approx 331\ 224$ $\therefore$ The population will exceed 330 000 at the end of 2001. | 1M<br>1A<br>1A<br>1A | 1M for calculating the populations of any two years r.t. 325 000 r.t. 331 000    |
|                                       |     |                                                                                                                                                                                                                                                                                       | (6)                  |                                                                                  |
|                                       |     |                                                                                                                                                                                                                                                                                       |                      |                                                                                  |
|                                       |     |                                                                                                                                                                                                                                                                                       |                      |                                                                                  |

|    | 77  |         | Solution                                                                                                                                      | Marks | Remarks   |
|----|-----|---------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| 11 | (a) | (i)     | Mean = 64.4                                                                                                                                   | 1A    | r.t. 64.4 |
|    | ()  | (ii)    | Mode = 95                                                                                                                                     | ,1A   |           |
|    |     |         | Median = 78                                                                                                                                   | 1A    |           |
|    |     | (iv)    | Standard deviation = 30.6                                                                                                                     | 1A    | r.t. 30.6 |
|    | (b) |         | s is because the distribution of marks in the Mathematics test ased (to the high end).                                                        | 1     |           |
|    | (c) | (i)     | Let the student scored $x$ marks in the English test.                                                                                         |       |           |
|    |     |         | $\frac{x-63}{15} = 0.4$                                                                                                                       | 1A    |           |
|    |     |         | x = 69                                                                                                                                        | 1A    |           |
|    |     | (ii)    | in the Mathmatics test                                                                                                                        |       |           |
|    |     |         | $=\frac{17}{35}\times100\%$                                                                                                                   |       |           |
|    |     |         | $\approx 48.6\%$ (or $48\frac{4}{7}\%$ )                                                                                                      | 1A    | r.t. 48.6 |
|    |     |         | (II) The standard score of Lai Wah in the English test                                                                                        |       |           |
|    |     |         | $=\frac{78-63}{15}$                                                                                                                           |       |           |
|    |     |         | <b>=1</b>                                                                                                                                     | 1A    | Or 84%    |
|    |     |         | <ul> <li>∴ The marks of the English test is normally distributed</li> <li>∴ More than half (or about 84%) of her classmates scored</li> </ul> |       |           |
|    |     |         | less than her.  Hence Lai Wah performed better in the English test than in the                                                                |       |           |
|    |     |         | Mathematics test relative to her classmates.                                                                                                  | 1     |           |
|    |     |         | $\frac{OR}{(II)}$ The standard score of Lai Wah in the English test $= \frac{78-63}{15}$                                                      |       | 9/44 - 1  |
|    |     |         |                                                                                                                                               | 1A    |           |
|    |     |         | = 1 The standard score of Lai Wah in the Mathematics test 78 – 64 4                                                                           |       |           |
|    |     |         | $=\frac{78-64.4}{30.6}$                                                                                                                       |       |           |
|    |     |         | ≈ 0.44                                                                                                                                        |       |           |
|    |     |         | :. Lai Wah performed better in the English test than in the Mathematics test relative to her classmates.                                      | 1     |           |
|    | *.  | \ (iii) |                                                                                                                                               |       |           |
|    |     | . (m)   | has been corrected                                                                                                                            |       |           |
|    |     |         | $= 63 + \frac{10}{35}$ (or $\frac{63 \times 35 + 10}{35}$ )                                                                                   | 1A    |           |
|    |     |         | ≈ 63.3                                                                                                                                        | 1A    | r.t. 63.3 |
|    |     |         | ~ 65.5                                                                                                                                        |       |           |
|    |     |         |                                                                                                                                               |       |           |
|    |     |         |                                                                                                                                               |       |           |
|    |     |         |                                                                                                                                               |       |           |
|    |     |         |                                                                                                                                               |       |           |
|    |     |         |                                                                                                                                               |       |           |
|    |     |         |                                                                                                                                               |       |           |
|    |     |         |                                                                                                                                               |       |           |

|                                         |                    |                                                                                                                 | Solution                                         |                                                 | i i i i i i i i i i i i i i i i i i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Marks         | Remarks               |
|-----------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------|
| 12.                                     | ļ.                 | V                                                                                                               |                                                  |                                                 | and the second s | in the second | ignation is<br>the    |
|                                         |                    | C                                                                                                               |                                                  |                                                 | h m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                       |
|                                         | A 6 m              | B                                                                                                               |                                                  | rm                                              | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                       |
| (a)                                     | (i) $VN = 3t$      |                                                                                                                 |                                                  | <u></u>                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1A            |                       |
|                                         | $VM = \frac{1}{C}$ | $\frac{3}{\cos\theta}$ m                                                                                        | ( or                                             | $3\sqrt{1+\tan^2\theta}$ m)                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1A            |                       |
|                                         | (ii) Capacit       | $y = \frac{1}{3} \cdot 6^2 \cdot 3 \tan \theta$                                                                 | $m^3$                                            | (1)                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1M            | For either (1) or (2) |
|                                         |                    | = $36\tan\theta$ m <sup>3</sup><br>urface area = $4 \cdot \frac{6}{2}$                                          |                                                  | (2)                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1A            |                       |
|                                         |                    | _                                                                                                               |                                                  | $\frac{36}{\sqrt{1+\tan^2\theta}}\mathrm{m}^2)$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1A            |                       |
| (b)                                     | (i) ∵ Th<br>∴ πr   | the base areas of the $^2 = 36$                                                                                 | greenhouses a                                    | re the same                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                       |
|                                         |                    | $= \frac{6\sqrt{\pi}}{\pi} \qquad \text{(or)}$                                                                  | $\frac{6}{\sqrt{\pi}}$ )                         |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1A            |                       |
|                                         |                    | ne capacities of the                                                                                            |                                                  |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                       |
|                                         | ∴ 36               | $5h = 36\tan\theta$ (or                                                                                         | $\pi \left(\frac{6}{\sqrt{\pi}}\right)^2 h = 36$ | $\delta \tan \theta$ )                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1M            |                       |
|                                         |                    | = 	an 	heta                                                                                                     |                                                  |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1A            |                       |
|                                         |                    | otal surface areas of $r^2 + 2\pi rh = \frac{36}{\cos \theta}$                                                  | the greenhous                                    | ses are equal, then                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                       |
|                                         |                    | $6 + 2\pi r n = \frac{1}{\cos \theta}$ $6 + 2\pi \cdot \frac{6}{\sqrt{\pi}} \cdot \tan \theta = \frac{1}{2\pi}$ | _36                                              |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 <b>M</b>    |                       |
|                                         |                    | $\sqrt{\pi}$ $6 + 12\sqrt{\pi} \tan \theta = \frac{3}{\cos \theta}$                                             |                                                  |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 1                     |
| •                                       |                    | $+\sqrt{\pi}\tan\theta = \frac{3}{\cos\theta}$                                                                  | S &                                              |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1             | ·                     |
| * * * * * * * * * * * * * * * * * * * * |                    | $+\sqrt{\pi} \tan 61^{\circ} - \frac{3}{\cos 6}$                                                                |                                                  | and the second                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | } 1M+1A       | r.t. 0.01             |
|                                         |                    | $+\sqrt{\pi}\tan 62^{\circ}-\frac{3}{\cos 6}$                                                                   | _                                                |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | r.t0.06               |
|                                         | ∴ (*               | ) has a root betwee                                                                                             | n 61° and 62°                                    |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,             |                       |
|                                         |                    | \$                                                                                                              |                                                  |                                                 | 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , i -         | ye i li               |
|                                         |                    |                                                                                                                 |                                                  |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                       |

| · · |      |       | Solution                                                                                                           | Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Remarks                                             |
|-----|------|-------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 13. | (a)  | (i)   | From the graph, $y$ is minimum when $x = 10$<br>$\therefore$ Number of belts in a batch = 10                       | 1 <b>A</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |
|     |      | (ii)  | From the graph, $y < 90$ when $x \ge 2$                                                                            | 1M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Accept $x > 1.6$ , $x \ge 1.6$<br>or $x = 2, 3, 4,$ |
|     |      |       | i.e. $x = 2, 3,, 11$<br>Number of belts in a batch = 2, 3, 4,, 11                                                  | 1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Accept $2 \le x \le 11$                             |
|     | (b)  | (i)   | $144 = 3^2 - 17(3) + c \; , \; c = 186$                                                                            | 1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |
|     |      | (ii)  | If $H = 120$ , then $x^2 - 17x + 186 = 120$<br>$x^2 - 17x + 66 = 0$                                                | 1M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |
|     |      |       | $x^2-20x+120 = -3x+54$<br>By adding the line $y = -3x+54$ on the graph,                                            | 1 <b>A</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ·                                                   |
|     |      | 3     |                                                                                                                    | 17.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |
|     |      | 120   | <b>†</b>                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
|     |      | 110   |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| •   |      | 100   |                                                                                                                    | . •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |
|     |      | 90    |                                                                                                                    | to experience a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
|     |      | 80    |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t.                                                  |
|     |      | 70    |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
|     |      |       |                                                                                                                    | and the state of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |
|     |      | 60    |                                                                                                                    | 1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $x = 6 \pm 0.2$ , $11 \pm 0.2$                      |
|     |      | 50    |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
|     |      | 40    |                                                                                                                    | ij.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |
|     |      | 30    |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
|     |      | 20    |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
|     |      | 20    |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
|     |      | 10    | y = -3x + 54                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                   |
|     |      | 0     | 2 4 6 8 10 12 14 16 x                                                                                              | The state of the s |                                                     |
|     |      |       | x = 6 or 11 (rej.)<br>The required number of handbags is 6.                                                        | 1A+1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |
|     |      | (iii) | Total cost of 10 belts and 6 handbags                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
|     |      |       | $= \$[10 \times (10^2 - 20 \times 10 + 120) + 6(6^2 - 17 \times 6 + 186)]$                                         | 1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |
|     |      |       | $= $[10 \times 20 + 6 \times 120]$<br>= \$920                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
|     |      |       | Total income for selling the belts and handbags<br>= $\{6 \times 100 + 4 \times 300 + 4 \times 10 + 2 \times 60\}$ | 1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |
|     |      |       | = \$1960<br>∴ She gained \$1040.                                                                                   | 1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |
|     | 97.C | T_MA  | THS I-9                                                                                                            | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T A                                                 |

| Solution                                                                                                                                                                                          | Marks | Remarks                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------|
| 14. (a) (i) $P(0 < T \le 200) = \frac{40}{50} \cdot \frac{39}{49}$                                                                                                                                | 1A    |                                                |
| $= \frac{156}{245} $ (or 0.637)                                                                                                                                                                   | 1A    | r.t. 0.637 (Ref. $A_1$ )                       |
| (ii) $P(500 \le T \le 700) = \frac{10}{50} \cdot \frac{40}{49} + \frac{40}{50} \cdot \frac{10}{49}$<br>= $2 \cdot \frac{10 \times 40}{50 \times 49}$                                              | 1M+1A | 1M for $p_1p_2 + p_2p_1$<br>1A for either term |
| $= \frac{16}{49} $ (or 0.327)                                                                                                                                                                     | 1A    | r.t. 0.327 (Ref. $A_2$ )                       |
| (iii) $P(1000 \le T \le 1200) = \frac{10}{50} \cdot \frac{9}{49}$                                                                                                                                 | 1A    |                                                |
| $=\frac{9}{245}$ (or 0.0367)                                                                                                                                                                      | 1A    | r.t. 0.0367 (Ref. $A_3$ )                      |
| (iv) $P(T>1200)=0$                                                                                                                                                                                | 1A    | Accept 'impossible', 'no chance'               |
| (b) Let the total weight obtained in the afternoon be $T'$ .                                                                                                                                      |       | e de                                           |
| (i) $P(T' < 450)$ or $T' > 850$ )<br>= $\frac{156}{245} + \frac{9}{245}$                                                                                                                          | 1M    | For $A_1 + A_3$                                |
| $= \frac{33}{49} $ (or 0.673)                                                                                                                                                                     | 1A    | r.t. 0.673                                     |
| (ii) $P( T-T'  > 200)$                                                                                                                                                                            |       |                                                |
| $=1-\left(\frac{156}{245}\right)^2-\left(\frac{16}{49}\right)^2-\left(\frac{9}{245}\right)^2$                                                                                                     | 1M    | For $1 - A_1^2 - A_2^2 - A_3^2$                |
| $=\frac{29208}{60025} \qquad (or 0.487)$                                                                                                                                                          | 1A    | r.t. 0.487                                     |
| $ \frac{OR}{=\frac{156}{245}\left(\frac{16}{49} + \frac{9}{245}\right) + \frac{16}{49}\left(\frac{156}{245} + \frac{9}{245}\right) + \frac{9}{245}\left(\frac{156}{245} + \frac{16}{49}\right)} $ | 1M    |                                                |
| $=\frac{29208}{60025} \qquad \text{(or 0.487)}$                                                                                                                                                   | 1A    | r.t. 0.487                                     |
|                                                                                                                                                                                                   |       |                                                |
|                                                                                                                                                                                                   |       |                                                |
|                                                                                                                                                                                                   |       |                                                |
|                                                                                                                                                                                                   |       |                                                |
|                                                                                                                                                                                                   |       |                                                |
|                                                                                                                                                                                                   |       |                                                |
|                                                                                                                                                                                                   |       |                                                |



|         | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Marks                | Remarks                                                                                  |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------|
| 16. (a) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                                                                                          |
|         | $\angle CAE = 90^{\circ}$ $\angle CAE + \angle FEA = 180^{\circ}$ Hence $AB//EF$ (int. $\angle$ s supp.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      | [同側(旁)內角互補]                                                                              |
|         | Marking Scheme Case 1 Any correct proof with correct reasons Case 2 Any correct proof without correct reaso Case 3 Any relevant correct argument with correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 3 <u>3 - 1   1   1   1   1   1   1   1   1   1</u>                                       |
| ` '     | $\angle FDE = \angle CDB \qquad \text{(vert. opp. } \angle s\text{)}$ $\angle CDB = \angle CBD \qquad \text{(base } \angle s\text{, isos. } \Delta\text{)}$ $\angle CBD = \angle FED \qquad \text{(alt. } \angle s\text{, } AB//EF\text{)}$ $\therefore \angle FDE = \angle FED$ Hence $FD = FE$ (sides opp. equal $\angle s$ )                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | [對頂角] [等腰Δ底角] [(內)錯角,AB//EF]  Or "base ∠s equal", "converof 'base ∠s, isos. Δ'", "equal" |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | ∠s, equal sides"<br>[等角對邊相等] 或 [等腰<br>角形底角等的逆定理] 或<br>[底角相等] 或 [等邊對等]<br>或 [等角對等邊]       |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | [對頂角]<br>[(內)錯角, <i>AB//EF</i> ]<br>Or "AAA" [等角]                                        |
|         | Marking Scheme  Case 1 Any correct proof with correct reasons  Case 2 Any correct proof without correct reason In addition, any relevant correct argument reason  Case 3 Any relevant correct argument with correct proof with correct reasons  Case 3 Any correct proof with correct reasons  Case 3 Any correct proof with correct reasons  Case 3 Any correct proof with correct reasons | ent with correct [1] |                                                                                          |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                                                                                          |

|            | Solution                                                                                                                                                                                                                                                                                                                                  | Marks    | Remarks                                                      |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------|
| (1         | iii) Let $\mathcal{C}$ be the circle passing through $D$ and touching $AE$ at $E$ . $\therefore$ $\mathcal{C}$ touches $AE$ at $E$ and $EF \perp AE$ .                                                                                                                                                                                    | -        |                                                              |
|            | : $\mathcal{C}$ touches $AE$ at $E$ and $EF \perp AE$ .<br>: the centre of $\mathcal{C}$ lies on the line $EF$ .                                                                                                                                                                                                                          | 1        | Pointing out $EF \perp AE$ for $AE$ touching $\mathcal{C}$   |
|            | : $ED$ is a chord of $\mathcal{C}$ and $FD = FE$<br>: the centre of $\mathcal{C}$ lies on the perpendicular of $DE$ through $F$                                                                                                                                                                                                           | 1        | Pointing out $FD = FE$ for                                   |
|            | $F$ is the intersection of the lines which is the centre of $\boldsymbol{\mathscr{C}}$ .                                                                                                                                                                                                                                                  |          | F as centre or FD, FE as radii                               |
|            | $\frac{\text{ACCEPT}}{\text{Consider the circle with } F \text{ as centre and } FD \text{ as radius.}$                                                                                                                                                                                                                                    | ·        |                                                              |
|            | $\therefore$ $FD = FE$                                                                                                                                                                                                                                                                                                                    | ,        |                                                              |
|            | $\therefore  \text{the circle passes through } D \text{ and } E.$                                                                                                                                                                                                                                                                         | 1        |                                                              |
|            | : $EF \perp AE$ and $EF$ is a radius<br>: the circle touches $AE$ at $E$ .                                                                                                                                                                                                                                                                | 1        | :                                                            |
|            |                                                                                                                                                                                                                                                                                                                                           |          |                                                              |
| (b)        | $m{y_{m{\Lambda}}}$                                                                                                                                                                                                                                                                                                                       |          |                                                              |
|            | F F                                                                                                                                                                                                                                                                                                                                       |          |                                                              |
|            | E(-4,3) $(-2,3)$ $B(6,3)$                                                                                                                                                                                                                                                                                                                 |          |                                                              |
|            |                                                                                                                                                                                                                                                                                                                                           |          |                                                              |
|            | C                                                                                                                                                                                                                                                                                                                                         |          |                                                              |
|            | * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                     |          |                                                              |
|            | A(-2,-1)                                                                                                                                                                                                                                                                                                                                  |          |                                                              |
| * -        | Mid-point of $DE = (-3, 3)$                                                                                                                                                                                                                                                                                                               | 1M       | For any correct method of                                    |
|            | : ED is horizontal                                                                                                                                                                                                                                                                                                                        |          | finding the $x$ -coordinate of $F$                           |
|            | $\therefore$ x-coordinate of $F = -3$                                                                                                                                                                                                                                                                                                     | 1A       |                                                              |
|            |                                                                                                                                                                                                                                                                                                                                           | ł        |                                                              |
|            | Slope of $AE = -2$                                                                                                                                                                                                                                                                                                                        |          | 1                                                            |
| Š          | Slope of $AE = -2$ Equation of $EE = \frac{y-3}{2} = \frac{1}{2}$                                                                                                                                                                                                                                                                         |          |                                                              |
| £          | Equation of $EF: \frac{y-3}{x+4} = \frac{1}{2}$                                                                                                                                                                                                                                                                                           |          |                                                              |
| Š          |                                                                                                                                                                                                                                                                                                                                           |          |                                                              |
| <u>.</u> ] | Equation of $EF: \frac{y-3}{x+4} = \frac{1}{2}$                                                                                                                                                                                                                                                                                           | 1M       | For any correct method of                                    |
|            | Equation of $EF$ : $\frac{y-3}{x+4} = \frac{1}{2}$ $x-2y+10=0$ Sub. $x=-3$ into $EF$ ,                                                                                                                                                                                                                                                    | 1M       |                                                              |
| ]          | Equation of $EF$ : $\frac{y-3}{x+4} = \frac{1}{2}$<br>x-2y+10=0<br>Sub. $x = -3$ into $EF$ ,<br>-3-2y+10=0                                                                                                                                                                                                                                |          |                                                              |
| \$         | Equation of $EF$ : $\frac{y-3}{x+4} = \frac{1}{2}$<br>x-2y+10=0<br>Sub. $x = -3$ into $EF$ ,<br>-3-2y+10=0<br>$y = \frac{7}{2}$                                                                                                                                                                                                           | 1M<br>1A |                                                              |
|            | Equation of $EF$ : $\frac{y-3}{x+4} = \frac{1}{2}$<br>x-2y+10=0<br>Sub. $x = -3$ into $EF$ ,<br>-3-2y+10=0                                                                                                                                                                                                                                |          | For any correct method of finding the $y$ -coordinate of $F$ |
| Ş          | Equation of $EF$ : $\frac{y-3}{x+4} = \frac{1}{2}$<br>x-2y+10=0<br>Sub. $x = -3$ into $EF$ ,<br>-3-2y+10=0<br>$y = \frac{7}{2}$<br>$\therefore F = (-3, \frac{7}{2})$                                                                                                                                                                     |          |                                                              |
| Ş          | Equation of $EF$ : $\frac{y-3}{x+4} = \frac{1}{2}$<br>x-2y+10=0<br>Sub. $x = -3$ into $EF$ ,<br>-3-2y+10=0<br>$y = \frac{7}{2}$<br>$\therefore F = (-3, \frac{7}{2})$<br>Note: Candidate may use equations of other straight lines for finding the coordinates of $F$ :                                                                   |          |                                                              |
| Ş          | Equation of $EF$ : $\frac{y-3}{x+4} = \frac{1}{2}$<br>$x-2y+10=0$ Sub. $x=-3$ into $EF$ , $-3-2y+10=0$ $y=\frac{7}{2}$ $\therefore F=(-3,\frac{7}{2})$ Note: Candidate may use equations of other straight lines for finding the coordinates of $F$ : $EF$ : $x-2y+10=0$                                                                  | 1A       | finding the y-coordinate of F                                |
| Ş          | Equation of $EF$ : $\frac{y-3}{x+4} = \frac{1}{2}$<br>$x-2y+10=0$ Sub. $x = -3$ into $EF$ , $-3-2y+10=0$ $y = \frac{7}{2}$ $\therefore F = (-3, \frac{7}{2})$ Note: Candidate may use equations of other straight lines for finding the coordinates of $F$ : $EF$ : $x-2y+10=0$ $CD$ : $x+2y-4=0$                                         |          |                                                              |
| ,<br>I     | Equation of $EF$ : $\frac{y-3}{x+4} = \frac{1}{2}$<br>$x-2y+10=0$ Sub. $x = -3$ into $EF$ , $-3-2y+10=0$ $y = \frac{7}{2}$ $\therefore F = (-3, \frac{7}{2})$ Note: Candidate may use equations of other straight lines for finding the coordinates of $F$ : $EF$ : $x-2y+10=0$ $CD$ : $x+2y-4=0$ Perpendicular from $F$ to $DE$ : $x=-3$ | 1A<br>}  | finding the y-coordinate of F                                |
| ,          | Equation of $EF$ : $\frac{y-3}{x+4} = \frac{1}{2}$<br>$x-2y+10=0$ Sub. $x = -3$ into $EF$ , $-3-2y+10=0$ $y = \frac{7}{2}$ $\therefore F = (-3, \frac{7}{2})$ Note: Candidate may use equations of other straight lines for finding the coordinates of $F$ : $EF$ : $x-2y+10=0$ $CD$ : $x+2y-4=0$                                         | 1A       | finding the y-coordinate of F                                |