只限教師參閱

FOR TEACHERS' USE ONLY

香港考試局 HONG KONG EXAMINATIONS AUTHORITY

2000年香港中學會考 HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 2000

數學 試卷一 MATHEMATICS PAPER 1

本評卷參考乃考試局專爲今年本科考試而編寫,供閱卷員參考之用。閱卷員在完成閱卷工作後,若將本評卷參考提供其任教會考班的本科同事參閱,本局不表反對,但須切記,在任何情況下均不得容許本評卷參考落入學生手中。學生若索閱或求取此等文件,閱卷員/教師應嚴詞拒絕,因學生極可能將評卷參考視爲標準答案,以致但知硬背死記,活剝生吞。這種落伍的學習態度,既不符現代教育原則,亦有違考試着重理解能力與運用技巧之旨。因此,本局籲請各閱卷員/教師通力合作,堅守上述原則。

This marking scheme has been prepared by the Hong Kong Examinations Authority for markers' reference. The Examinations Authority has no objection to markers sharing it, after the completion of marking, with colleagues who are teaching the subject. However, under no circumstances should it be given to students because they are likely to regard it as a set of model answers. Markers/teachers should therefore firmly resist students' requests for access to this document. Our examinations emphasise the testing of understanding, the practical application of knowledge and the use of processing skills. Hence the use of model answers, or anything else which encourages rote memorisation, should be considered outmoded and pedagogically unsound. The Examinations Authority is counting on the co-operation of markers/teachers in this regard.

考試結束後,各科評卷參考將存放於教師中心,供教師參閱。 After the examinations, marking schemes will be available for reference at the teachers' centre.

©香港考試局 保留版權 Hong Kong Examinations Authority All Rights Reserved 2000

2000-CE-MATH 1-1

只限教師參閱

FOR TEACHERS' USE ONLY

只限教師參閱 FOR TEACHERS' USE ONLY

Hong Kong Certificate of Education Examination Mathematics Paper 1

General Marking Instructions

- 1. It is very important that all markers should adhere as closely as possible to the marking scheme. In many cases, however, candidates will have obtained a correct answer by an alternative method not specified in the marking scheme. In general, a correct answer merits all the marks allocated to that part, unless a particular method has been specified in the question. Makers should be patient in marking alternative solutions not specified in the marking scheme.
- 2. In the marking scheme, marks are classified into the following three categories:

'M' marks

awarded for correct methods being used;

'A' marks

awarded for the accuracy of the answers;

Marks without 'M' or 'A'

awarded for correctly completing a proof or arriving

at an answer given in a question.

In a question consisting of several parts each depending on the previous parts, 'M' marks should be awarded to steps or methods correctly deduced from previous answers, even if these answers are erroneous. However, 'A' marks for the corresponding answers should NOT be awarded (unless otherwise specified).

- 3. For the convenience of markers, the marking scheme was written as detailed as possible. However, it is still likely that candidates would not present their solution in the same explicit manner, e.g. some steps would either be omitted or stated implicitly. In such cases, markers should exercise their discretion in marking candidates' work. In general, marks for a certain step should be awarded if candidates' solution indicated that the relevant concept/technique had been used.
- 4. Use of notation different from those in the marking scheme should not be penalized.
- 5. In marking candidates' work, the benefit of doubt should be given in the candidates' favour.
- 6. Marks may be deducted for wrong units (u) or poor presentation (pp).
 - a. The symbol (u-1) should be used to denote 1 mark deducted for u. At most deduct 1 mark for u for the whole paper.
 - b. The symbol **pp-1** should be used to denote 1 mark deducted for pp. At most deduct 2 **marks** for pp for the whole paper. For similar pp, deduct 1 mark for the first time that it occurs. Do not penalize candidates twice in the paper for the same pp.
 - c. At most deduct 1 mark in each question. Deduct the mark for u first if both marks for u and pp may be deducted in the same question.
 - d. In any case, do not deduct any marks for pp or u in those steps where candidates could not score any marks.
- 7. Marks entered in the Page Total Box should be the NET total scored on that page.
- 8. In the marking scheme, 'r.t.' stands for 'accepting answers which can be rounded off to', 'f.t.' stands for 'follow through' and 'or equivalent' means 'accepting equivalent forms of the equation which may have not been simplified but without uncollected like terms'. Steps which can be skipped are shaded whereas alternative answers are enclosed with rectangles or (brackets). All fractional answers must be simplified.

	Solution	·	Marks	Remarks
When $C = 30$, $30 = \frac{5}{9}(F - 32)$ $\frac{30 \times 9}{5} = F - 32$ F = 86	(or $270 = 5F - 160$)		1M 1A 1A	substituting $C = 30$ removing brackets
$C = \frac{5}{9}(F - 32)$ $F = \frac{9}{5}C + 32$ When $C = 30$,	(or $9C = 5F - 160$)		IA IM	removing brackets substituting $C = 30$
$F = \frac{9}{5} \times 30 + 32$ $F = 86$			[1A] ————————————————————————————————————	
$\frac{x^{-3}y}{x^2} = \frac{y}{x^2x^3}$ $= \frac{y}{x^2+3}$ $= \frac{y}{x^5}$	$(\text{ or } x^{-2}x^{-3}y)$		1M 1M —1A —(3)	applying $a^{-m} = \frac{1}{a^m}$ applying $a^m a^n = a^{m+n}$
Area of the sector	$= \frac{75}{360} (6^2 \pi) \text{ cm}^2$ $\approx 23.6 \text{ cm}^2 \text{(or } 7\frac{1}{2}\pi \text{ cm}^2\text{)}$		1M+1A 1A	1M for ratio or area of circle r.t. 23.6 or $\frac{15}{2}\pi$, 7.5π
Area of the sector	$= \frac{1}{2} \times 6^2 \times \frac{75}{180} \pi \text{ cm}^2$		1M+1A	1M for $\frac{1}{2}r^2\theta$ or correct value of θ r.t. 23.6 or $\frac{15}{2}\pi$, 7.5 π
	$\approx 23.6 \text{ cm}^2$ (or $7\frac{1}{2}\pi \text{ cm}^2$)		- (3)	6 cm
				75°

		Solution	Mark	s Remarks
$a^{2} +$	$7^2 = 10^2$	(or $a = \sqrt{10^2 - 7^2}$)	1A	
a =		(or 7.14)	1A	r.t. 7.14
cos x	$rac{7}{2}$	(or $\sin x^{\circ} = \frac{\sqrt{51}}{10}$, $\tan x^{\circ} = \frac{\sqrt{51}}{7}$)	1M	
<i>x</i> ≈ 45		10 , , , , 7		
x≈45			1A	r.t. 45.6, $u-1$ for $x \approx 45.6^{\circ}$, $x \approx 45^{\circ}34^{\circ}$, $x^{\circ} \approx 45.6^{\circ}$, $x^{\circ} \approx 4$
$\cos x^{\alpha}$	$r = \frac{7}{1}$			
$x \approx 4$			1A	10 cm a cn
1		(or $a \approx 7 \tan 45.6^{\circ}$)	1A	
$a \approx 7$		(or $u \sim t \tan 45.0$)	lM lA	x° 7 cm
		·	(4)	
$\frac{11-2}{5}$	$\frac{x}{x} < 1$			
5		11. 0		
11-2.	<i>x</i> < 5	(or $\frac{11}{5} - \frac{2}{5}x < 1$)		
-2 <i>x</i> <	-6		1A+1.	A For any 2 of these 3 steps, 1A each. 2 of these 3 steps can b
2x > 6	5	(or $6 < 2x$, $\frac{2}{5}x > \frac{6}{5}$)		omitted.
<i>x</i> > 3			lA	
				or \longleftrightarrow
	1			3 3
-5	-4 -3	-2 -1 0 1 2 3	4 5 <u>1M</u>	
			(4)	3
f(-3) (or	$2(-3)^3 + 6(-3)^2 - 2(-3) - 7$	2A	
= -1			1A	
:. T	he remainder	118 -1 .		
	$\frac{2+0-}{2}$	· · · · · · · · · · · · · · · · · · ·		
	$+3$ $\sqrt{2+6}$ $2+6$	2-1		
		2-7	2A	
		2-6		
		1-1		
∴ R	Remainder = -	-1	1A	
			(3)	
			l	l

	Solution	Marks	Remarks
7.	x = 25	1A	$u-1 \text{ for } x = 25^{\circ}, x^{\circ} = 25^{\circ}$
	$\therefore \angle ADB = x^{\circ}$ $\therefore y = 180 - 56 - 25 - x$ $= 74$	1M 1M —1A —(4)	applying \angle s in same segment $u-1$ for $y = 74^{\circ}$, $y^{\circ} = 74^{\circ}$
			A yº 25° E 56° B
3.	Actual area = 220×5000^2 cm ² = $\frac{220 \times 5000^2}{100^2}$ m ² = 550000 m ² (or area in m ² = 550000)	2M 1M 1A (4)	for $\times 5000^2$, ignore unit for $\div 100^2$, $pp-1$ for not handling units properly
9.	(a) Slope of $L = \frac{4-0}{-4-6}$ = $-\frac{2}{5}$ (or -0.4)	1A	
	(b) Equation of L : $y = -\frac{2}{5}(x-6) \qquad \text{(or } \frac{y-4}{x+4} = -\frac{2}{5} \text{)}$ $y = -\frac{2}{5}x + \frac{12}{5} \qquad \text{(or } 2x+5y-12=0 \text{)}$	1M 1A	or equivalent
	(c) When $x = 0$, $y = \frac{12}{5}$. (or $y = 2.4$)	1M 1A	
	$\therefore C = (0, \frac{12}{5})$	(5)	

	Solution			Remarks
	2 2 2 2			
10. (a)	$10x^2 + 9x - 22 = 0$	$-9\pm\sqrt{9^2+4\times10\times22}$		
	(x+2)(10x-11)=0	$\left(\text{ or } x = \frac{-9 \pm \sqrt{9} + 4 \times 10 \times 22}{2 \times 10} \right)$	1 A	
	$x = -2$ or $\frac{11}{10}$	(or $x = -2$ or 1.1)	_1A_	
	10		(2)	
(b)	$10000(1+r\%)^2 + 9000(1+r\%) =$	22000	1M+1A	1M for $10000(1+r\%)^2$
	[10000(1+r%)+9000](1+r%) =	= 22000	1M+1A	1M for $10000(1+r\%) + 9000$
	2	2 200 2000 0		pp-1 for confusing r with $r%$
	$10(1+r\%)^2 + 9(1+r\%) - 22 = 0$	(or $r^2 + 290r - 3000 = 0$, $10(r\%)^2 + 29(r\%) - 3 = 0$)		for choosing '+ve' value from
	From (a), $1+r\% = 1.1$	10(r%) + 29(r%) - 3 = 0	1M	'+ve' and 1 '-ve' roots, provid
	rioni (a), 1+7/0-1.1			that the original equation must correct
	r = 10		1A (4)	Correct
II. (a)	Missing value in 1st table = 66		1A	
	Missing value in 2nd table = 20		1A (2)	
(b)	An estimate of the mean $210\times3+230\times13+250\times30+2$	270×20+290×9	1M	
	75	$\frac{270 \times 20 + 290 \times 9}{\text{(seconds)}}$	INI	
	≈ 255 seconds		1A (2)	r.t. 255
			*	054 055
(c)	Median ≈ 254 seconds	(or 255 seconds)	$\frac{1A}{(1)}$	r.t. 254 or 255
(ď.	Number of songs have lengths	greater than 220 seconds		
(4)	but not greater than 260 seco	nds		
	= 13 + 30 = 43	(or 46-3)	1A	
	- 4 3			
	Percentage required = $\frac{43}{75} \times 100$	0%		
	≈ 57.3%	(or $57\frac{1}{3}\%$)	1A	r.t. 57.3
		3	(2)	

	Solution	Marks	Remarks
(a) 1	Numbers having two zero digits are 100, 200,, 900.		
]	Probability required $=\frac{9}{900}$	1A	for numerator
	$=\frac{1}{100}$ (or 0.01)	1A	
	Probability required = $\frac{1}{10} \times \frac{1}{10}$	1A	
	$= \frac{1}{100} $ (or 0.01)	1A	
i		(2)	
(b)	Numbers having no zero digits are 111, 112,, 119 121, 122,, 129 911, 912,, 919 921, 922,, 929		
	i: i: 191, 192,, 199 991, 992,, 999		
	Probability required = $\frac{9 \times 9 \times 9}{900}$	1A	for numerator
	$=\frac{81}{100}$ (or 0.81)	1A	
	Probability required = $\frac{9}{10} \times \frac{9}{10}$	ĺΑ	
	$= \frac{81}{100} $ (or 0.81)	1A	
		(2)	
(c)	Numbers having exactly one zero digit are 101, 102,, 109, 110, 120,, 190 201, 202,, 209, 210, 220,, 290		
	: : 901, 902,, 909, 910, 920,, 990		
	Probability required = $\frac{9 \times 9 + 9 \times 9}{900}$	1A	for numerator
	$=\frac{9}{50}$ (or 0.18)	1A	
	Probability required = $1 - \frac{1}{100} - \frac{81}{100}$	1M	
	$= \frac{9}{50} $ (or 0.18)	1A	
	Probability required = $\frac{1}{10} \times \frac{9}{10} \times 2$	1A	
	$= \frac{9}{50} $ (or 0.18)	1A	
		(2)	

∠ <i>BCG</i> =	ach interior angle of the pentagon = $\frac{(5-2)\times180^{\circ}}{5}$ = $\frac{108^{\circ}}{5}$	1A	A
∠ <i>BCG</i> =			
	. 108° 00° _ 18°	1 1 1 1 1	\nearrow
ZCBG =	$\frac{180^{\circ} - 18^{\circ}}{2} = 81^{\circ}$	1A	B = G
	2	1M	\
	$108^{\circ} - 81^{\circ} = 27^{\circ}$ $180^{\circ} - 27^{\circ} - 108^{\circ} = 45^{\circ}$	1A _1A	
		(5)	
(b) · · ·	AP _ AB		C D
	$\frac{4P}{27^{\circ}} = \frac{AB}{\sin 45^{\circ}}$		
∴ AP	$=\frac{\sin 27^{\circ}}{\sin 45^{\circ}}AB$		
	$= \frac{\sin 27^{\circ}}{\sin 45^{\circ}} AE \qquad (\text{ or } \frac{AP}{\sin 27^{\circ}} = \frac{AE}{\sin 45^{\circ}} \text{ etc.})$	1M	
		1101	
∴ AP	≈ $0.642AE$ (or $AE \approx 1.56 AP$) is longer than PE .	1M+1	1 d.p. is sufficient
		(3)	
		43 44	65
	3rd row	21 22	41
	2nd	$\frac{\text{d row}}{1 \text{st row}} \frac{1}{1} \frac{2}{2}$	19 20
4. (a) Number	of seats in the last row = $20 + 2(50 - 1)$ = 118	1A 1A	
		(2)	
(1) m · 1	n ₅₀ 00 00 00		
(b) Total nu	mber of seats in the first <i>n</i> rows = $\frac{n}{2}[2 \times 20 + 2(n-1)]$	1A	
	$= n^2 + 19n$		
If $n^2 +$	$19n = 2000$, then (or $n^2 + 19n \ge 2000$)	1M	•
n^2	+19n - 2000 = 0		
n =	$\frac{-19\pm\sqrt{19^2-4(-2000)}}{2}$		
	2 $36.2 \text{ or } -55.2$ (or $n \approx 36.2 \text{ only}$)	1A	r.t. 36.2, -55.2
		·	1.6. 30.2, 33.2
∴ The	e seat numbered 2000 can be found in the 37th row.	1A	
Let $f(n)$	$= n^2 + 19n .$		
· ·	f(36) = 1980 $f(37) = 2072$	}1M+1A	
·	The seat numbered 2000 can be found in the 37th row.	IA	
		(4)	
			1

Solution	Marks	Remarks
15. (a) x and y satisfy the following conditions: $1000(40x) + 800(30y) \le 2400000$ or $5x + 3y \le 300$ $1000(10x) + 800(25y) \le 1200000$ or $x + 2y \le 120$ $x + y \le 70$ x , y are non-negative integers	1A 1A 1A	Withhold 1 mark for any "<".

10 20 50		
Draw the straight lines $5x+3y=300$, $x+2y=120$ and $x+y=70$.	1A+1A	1A for any correct line. 1A for all. Accept dotted lines or lines without labeling. Position of lines should not lie outside 1
Let $P(x, y)$ be the profit generated by x boxes of brand A mixed nuts and y boxes of brand B mixed nuts. Then $P(x, y) = 800x + 1000y$ $= 200(4x + 5y)$	1A	small grid at the edges.
By drawing parallel lines of $4x + 5y = 0$,	1M	check the line on graph
P(0, 0) = 0, P(0, 60) = 60000, P(20, 50) = 66000, P(45, 25) = 61000 and P(60, 0) = 48000	1M	
P(x, y) attains its maximum at (20, 50).	1A	f.t.
The profit is the greatest when $x = 20$ and $y = 50$.	(8)	
	ı	I .

2000-CE-MATH 1-9

只限教師參閱 FOR TEACHERS' USE ONLY

	Solution	Marks	Remarks
(b)	In addition to the conditions in (a), x , y should also satisfy $y < x$. The feasible solution becomes the shaded region.	1A	or drawing $y = x$ in the figure
	By considering lines parallel to $4x + 5y = 0$ (or testing points), $P(x, y)$ attains its maximum at $(36, 34)$. \therefore The greatest profit is \$62800.	1A 1A (3)	
i de la companya de			
		7-	
	<i>₩</i>		

	Solution		Marks	Remarks
s	R	C		
30°	Figure 9A	P Figure 9B		
Refer to Fi		8		
(L1)	∠ <i>OPC</i> = 90°	(tangent ⊥ radius)		(tangent properties) [切線⊥半徑]、[切線性質/定理]
(L2)	$\angle PCO = 180^{\circ} - 90^{\circ} - 30^{\circ} = 60^{\circ}$	$(\angle \operatorname{sum of } \Delta)$		[△內角和]
(L3)	$\angle PQO = \frac{1}{2} \angle PCO = 30^{\circ}$	(∠ at centre twice ∠ at circumference)		(∠at centre = 2 × ∠at circumference) [圓心角兩倍於圓周角]、[圓心角是圓周角的兩倍]、[圓心角=2×圓周角]
Refer to F	igure 9A, and let $\angle CQP = x$. $\angle OPC = 90^{\circ}$	(tangent ⊥ radius)		(tangent properties) [切線_1半徑]、[切線性質/定理]
(L5) (L6)	$\angle PCO = 180^{\circ} - 90^{\circ} - 30^{\circ} = 60^{\circ}$ $\therefore CP = CQ$	$(\angle sum of \Delta)$ (radius)		[△內角和]
(L7)	$\therefore \angle CPQ = \angle CQP = x$	(base \angle s of isos. Δ)		[等腰Δ底角]
(L8) (L9)	$2x = \angle PCO = 60^{\circ}$ $x = 30^{\circ}$	(ext. \angle of \triangle)		[Δ的外角]
Refer to I	Figure 9B, and let $\angle CQP = x$.	<u> </u>		
1	$\angle TPO = \angle CQP = x$	(∠ in alt. segment)		[交錯弓形的圓周角]、[弦切知 定理]
(L11)	$\angle TPQ = 90^{\circ}$	(∠ in semicircle)		[半圓上的圓周角]
(L12)	$\therefore 30^{\circ} + 90^{\circ} + 2x = 180^{\circ}$	$(\angle \text{ sum of } \Delta)$		[Δ內角和]
(L13)	<i>x</i> = 30°			
Markin	g Scheme :			
Case 1	Any correct proof with correct r	easons.	3	
Case 2	Any correct proof without reason In addition, any relevant correct (at most 1 mark).		1 1	At most 2 marks
Case 3	Any relevant correct argument v	with correct reason.	1	At most 1 mark
			(3)	

		Solution	Marks	Remarks
(b)	(i)	(Page 1400P 200		
	(L14)	$\angle ROQ = \angle QOP = 30^{\circ}$ (tangents from ext. pt.)		(tangent properties) [切線性質/定理]
	(L15)	ZPQO = 30° (proved)		[73][7]
		$\therefore \angle RQP + \angle POR = 180^{\circ} $ (opp. \angle s of cyclic quad.)		[圓內接四邊形的對角]
:	(L17)	$\therefore \angle CQR = 180^{\circ} - 3 \times 30^{\circ} = 90^{\circ}$		
	(L18)	Hence RQ is tangent to circle (cony. of tangent L radius) PQS at Q.		[切線1半徑的逆定理]
	Markin	g Scheme :		
	Case 1	Any correct proof with correct reasons.	3	
	Case 2	Any correct proof without reasons.	1	
		In addition, any relevant correct argument with correct reason (at most 1 mark).	1	At most 2 marks
	Case 3	Any relevant correct argument with correct reason.	1	At most 1 mark
			(3)	
(b)	(ii) ::	Slope of $OC = \frac{4}{3}$		The control of the co
	∴ ,	Slope of $QR = -\frac{3}{4}$	1M	
		$=\sqrt{6^2+8^2}=10$		
		$= \sqrt{6^2 + 8^2} = 10$ $= CP = OC \sin 30^\circ = 5$	1A 1M	
	Let :	the coordinates of Q be (x, y) . OC: CQ = 10: 5 = 2: 1		
	·.	$\frac{2x+1(0)}{3} = 6$ and $\frac{2y+1(0)}{3} = 8$	1M	
	Equ	ation of circle: $(x-6)^2 + (y-8)^2 = 25$		
		$x^2 + y^2 - 12x - 16y + 75 = 0$ (1)		
	Equ	ation of $OC: y = \frac{4}{3}x$ (2)		
	Solv	ving (1) and (2), $x^2 - 12x + 27 = 0$ (or $y^2 - 16y + 48 = 0$) x = 3 (rej.) or 9 (or $y = 4$ (rej.) or 12)	1M	must reject the smaller root
		x = 9 and $y = 12$		
	Hen	ce the equation of QR is		
		$\frac{y-12}{x-9} = -\frac{3}{4}$		
		$3x + 4y - 75 = 0$ (or $y = -\frac{3}{4}x + \frac{75}{4}$)	1A	
			(5)	
			·	
			!	İ

	Solution	Marks	Remarks
7. (a) (i)	$AD = \frac{h}{\sin 30^{\circ}} \text{ m} = 2h \text{ m}$	1A	<i>u</i> −1 for missing unit
	$BD = \frac{h+10}{\sin 60^{\circ}} \text{ m} = \frac{2}{\sqrt{3}} (h+10) \text{ m} = \frac{2\sqrt{3}}{3} (h+10) \text{ m}$	1A	
(ii)		1A	or $AB = \sqrt{200} \ , \ \frac{10}{\sin 45^{\circ}} \ \text{m etc}$
	By cosine law, $AB^2 = AD^2 + DB^2 - 2(AD)(DB)\cos \angle ADB$ $(h)^2 (h+10)^2 (h)(h+10)$		
	$200 = \left(\frac{h}{\sin 30^{\circ}}\right)^{2} + \left(\frac{h+10}{\sin 60^{\circ}}\right)^{2} - 2\left(\frac{h}{\sin 30^{\circ}}\right)\left(\frac{h+10}{\sin 60^{\circ}}\right)\cos 30^{\circ}$ $200 = 4h^{2} + \frac{4}{3}(h+10)^{2} - 4h(h+10)$	1M+1A	Do not accept setting $AD = BL$
	$h^2 - 10h - 50 = 0$	1A	or multiples
	$h \approx 13.660$ or -3.660 $h \approx 13.7$ or -3.66 (rejected)	1A	or $5 \pm 5\sqrt{3}$ or $h \approx 13.7$ only
	$5+5\sqrt{3}$ or $5-5\sqrt{3}$ (rejected)	(7)	
	0 B		
	Vertical 30° 60°		
	D		
E.			
(b) AC	$C = 2(10 \sin 10^{\circ}) \text{ (m)}$ = $20 \sin 10^{\circ} \text{ (m)}$ $\approx 3.47296 \text{ (m)}$	1A	
AE	$S = \frac{h}{\sin 25^{\circ}} \text{ (m)} \approx 32.3 \text{ (m)}$		
Ву	sine law, $\sin \angle ACE = \frac{AE \sin 5^{\circ}}{AC}$ $h \sin 5^{\circ}$		
∴	$\approx \frac{h \sin 5^{\circ}}{20 \sin 10^{\circ} \sin 25^{\circ}}$ ≈ 0.8112 ∠ACE = 54.2° or 126° 54°13' or 126°	1M 1A+1A	r.t. 54.2, 126
		(4)	

			S	olution		Marks	Remarks
3. (a	a)	Let	$V = ah^2 + bh^3$ where a , b are non-zero constants. Then $\begin{cases} \frac{29}{3}\pi = a + b \\ 81\pi = 9a + 27b \end{cases} \begin{cases} a + b = \frac{29}{3}\pi + \dots (1) \\ a + 3b = 9\pi + \dots (2) \end{cases}$			1A	
						1M	
			(2)-(1) gives $2b=-$	_			
			Hence $b = -\frac{\pi}{3}$ and a	$a=10\pi$		1A	
		:	$V = 10\pi h^2 - \frac{\pi}{3}h^3$	$Y = 10\pi h^2 - \frac{\pi}{3}h^3$			
			Surface area = $2\pi \times 10^2$ (cm ²) ≈ 628 cm ² (or 200π cm ²) \therefore Volume of hemisphere = $\frac{2}{3}\pi \times 10^3$ (cm ³)			(3)	
(b	o) '	(i)				1A	r.t. 628
		(ii)				1A	
		$\therefore \frac{2}{3}\pi \times 10^3 - 2V = \frac{1400}{3}\pi$					
			$\frac{2}{3}\pi \times 10^3 - 2(10\pi h^2 - \frac{\pi}{3}h^3) = \frac{1400}{3}\pi$			1M	
	$\frac{2}{3}\pi(1000-30h^2+h^3-700)=0$						
			$h^3 - 30h^2 + 300 = 0$			1	
		From the graph in Figure 11.3, $3.3 \le h \le 3.4$ (or $3.35 \le h \le 3.4$ etc.)			3.4 etc.)	1M	or claiming to draw $y = -300$ writing $h \approx 3.35$, $h \approx 3.4$ etc.
			Let $f(h) = h^3 - 30h^2 + 300$, then $f(3.3) > 0$ and $f(3.4) < 0$. Using the method of bisection,				
			Interval	"mid-value"	f(h)	1M	use interval \subseteq [0, 5] containing the root as the starting interval
			3.3 < h < 3.4	3.35	+ve (0.9204)		testing sign of "mid-value" or any intermediate value
			3.35 < h < 3.4	3.375	-ve (-3.2754)	1M	choosing the correct interval
			3.35 < h < 3.375 3.35 < h < 3.363	3.363	-ve (-1.2583)		
			3.35 < h < 3.357 $3.35 < h < 3.357$	3.357 3.354	-ve (-0.2519) +ve (0.2507)		
			3.354 < h < 3.357	3.356	-ve (-0.0843)		
			3.354 < h < 3.356	3.355	+ve (0.0832)		
			$\therefore 3.355 < h < 3.356$ $h \approx 3.36 \text{(correct to 2 decimal places)}$			1.4	f+
		$h \approx 3.36$ (correct to 2 decimal places)			1A	f.t.	
			Let $f(h) = h^3 - 30h^2 + 300$.				
			$f(3.34) \approx 2.5917$				
		$f(3.35) \approx 0.9203$ $f(3.355) \approx 0.0832$			0.0832	1M+1M	
			$f(3.36) \approx -0.7549$ $f(3.37) \approx -2.4342$				
			$(3.37) \approx -2.4342$ $\therefore h \approx 3.36 \text{ (correct to 2 decimal places)}$			1A	f.t.
			F				
						(8)	