只限教師參閱

FOR TEACHERS' USE ONLY

香港考試局 HONG KONG EXAMINATIONS AUTHORITY

2001年香港中學會考 HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 2001

數學 試卷一 MATHEMATICS PAPER 1

本評卷參考乃考試局專爲今年本科考試而編寫,供閱卷員參考之用。閱卷員在完成閱卷工作後,若將本評卷參考提供其任教會考班的本科同事參閱,本局不表反對,但須切記,在任何情況下均不得容許本評卷參考落入學生手中。學生若索閱或求取此等文件,閱卷員/教師應嚴詞拒絕,因學生極可能將評卷參考視爲標準答案,以致但知硬背死記,活剝生吞。這種落伍的學習態度,既不符現代教育原則,亦有違考試着重理解能力與運用技巧之旨。因此,本局籲請各閱卷員/教師通力合作,堅守上述原則。

This marking scheme has been prepared by the Hong Kong Examinations Authority for markers' reference. The Examinations Authority has no objection to markers sharing it, after the completion of marking, with colleagues who are teaching the subject. However, under no circumstances should it be given to students because they are likely to regard it as a set of model answers. Markers/teachers should therefore firmly resist students' requests for access to this document. Our examinations emphasise the testing of understanding, the practical application of knowledge and the use of processing skills. Hence the use of model answers, or anything else which encourages rote memorisation, should be considered outmoded and pedagogically unsound. The Examinations Authority is counting on the co-operation of markers/teachers in this regard.

考試結束後,各科評卷參考將存放於教師中心,供教師參閱。 After the examinations, marking schemes will be available for reference at the teachers' centre.

©香港考試局 保留版權 Hong Kong Examinations Authority All Rights Reserved 2001

2001-CE-MATH 1-1

Hong Kong Certificate of Education Examination Mathematics Paper 1

General Marking Instructions

- 1. It is very important that all markers should adhere as closely as possible to the marking scheme. In many cases, however, candidates will have obtained a correct answer by an alternative method not specified in the marking scheme. In general, a correct answer merits all the marks allocated to that part, unless a particular method has been specified in the question. Makers should be patient in marking alternative solutions not specified in the marking scheme.
- 2. In the marking scheme, marks are classified into the following three categories:

'M' marks

awarded for correct methods being used;

'A' marks

awarded for the accuracy of the answers;

Marks without 'M' or 'A'

awarded for correctly completing a proof or arriving

at an answer given in a question.

In a question consisting of several parts each depending on the previous parts, 'M' marks should be awarded to steps or methods correctly deduced from previous answers, even if these answers are erroneous. However, 'A' marks for the corresponding answers should NOT be awarded (unless otherwise specified).

- 3. For the convenience of markers, the marking scheme was written as detailed as possible. However, it is still likely that candidates would not present their solution in the same explicit manner, e.g. some steps would either be omitted or stated implicitly. In such cases, markers should exercise their discretion in marking candidates' work. In general, marks for a certain step should be awarded if candidates' solution indicated that the relevant concept/technique had been used.
- 4. Use of notation different from those in the marking scheme should not be penalized.
- 5. In marking candidates' work, the benefit of doubt should be given in the candidates' favour.
- 6. Marks may be deducted for wrong units (u) or poor presentation (pp).
 - a. The symbol (u-1) should be used to denote 1 mark deducted for u. At most deduct 1 mark for u for the whole paper.
 - b. The symbol pp-1 should be used to denote 1 mark deducted for pp. At most deduct 2 marks for pp for the whole paper. For similar pp, deduct 1 mark for the first time that it occurs. Do not penalize candidates twice in the paper for the same pp.
 - c. At most deduct 1 mark in each question. Deduct the mark for u first if both marks for u and pp may be deducted in the same question.
 - d. In any case, do not deduct any marks for pp or u in those steps where candidates could not score any marks.
- 7. Marks entered in the Page Total Box should be the NET total scored on that page.
- 8. In the marking scheme, 'r.t.' stands for 'accepting answers which can be rounded off to', 'f.t.' stands for 'follow through' and 'or equivalent' means 'accepting equivalent forms of the equation which has been simplified and without uncollected like terms'. Steps which can be skipped are shaded whereas alternative answers are enclosed with rectangles. All fractional answers must be simplified.

	Solution		Marks	Remarks
$\frac{m^3}{(mn)^2} = \frac{m^3}{m^2 n^2}$ $= \frac{m^{3-2}}{n^2}$ $= \frac{m}{n^2}$			1M 1A (3)	applying $(ab)^p = a^p b^p$ applying $\frac{a^p}{a^q} = a^{p-q}$
f(2) = 5 ∴ the remainder is	$2^3 - 2^2 + 2 - 1$ s 5.		2A 1A	
	$ \begin{array}{r} 1+1+3 \\ 1-2 \overline{\smash{\big)}1-1+1-1} \\ 1-2 \\ \hline 1-1 \\ 1-2 \\ \hline 3-1 \end{array} $] IA	
∴ remainder = 5	$\frac{3-6}{5}$		1A 1A (3)	
3 cm 50°	Perimeter = [3	$+3 + \frac{50}{360} (2 \times 3 \times \pi)$ (cm) $3 + 3 + 3 \times \frac{50}{180} \pi$ (cm) 32 cm $\left[6 + \frac{5}{6} \pi\right]$ cm	1M+1A 1M+1A 1A (3)	1M for summation (3+3+?) 1A for arc length 1M for summation 1A for arc length r.t. 8.62, u-1 for missing unit
$x^{2} + x - 6 > 0$ $(x+3)(x-2) > 0$ $x < -3 \text{ or } x > 2$	-2 -1 0 1	2 3 4 5	1M (3)	For factorization only Distinct roots and ">0" No mark for $x < -3$, $x > 2$ etc or $ \begin{array}{c} -3 & 2 \\ -3 & 2 \end{array} $
01-CE-MATH 1–3				

	7	Solution		Marks	Remarks
5. <u>Ignor</u>	re writings on the diag				
		∵ ∠ADC = ∠DCA =		1A	Can be absorbed below
			: 180° – 90° – 30°	1A 1M	Can be absorbed below
			: 60°	1A	u–1 for missing unit
//		Joint BC,			a rormsomg unit
A	C	$\angle ABC = 90^{\circ}$		1A	Can be absorbed below
		$\angle DBC = 90^{\circ}$	- 30° ····	1A	
	30°	$\angle DAC = \angle DI$	$3C = 60^\circ$	1M+1A	$1M \text{ for } \angle DAC = \angle DBC$
				(4)	
	B				
5. ∵	$y = \frac{1}{2}(x+3)$				
	2 (11 + 3)				
∴.	2y = x + 3	$y = \frac{1}{2}x + \frac{3}{2}$	-	1A	removing brackets
*	-	2 2			Tomo ing ordenous
	x = 2y - 3			1A	
In the	above linear relation, th	a coefficient of	. i. o. o.	1M	
	above inical relation, it	ie coemciem or	/ 18 Z .	1 IVI	Putting $y = y_0 + 1$ or
Let x	$y_0 = 2y_0 - 3$. If $y = y_0$	x + 1 then $x = 1$	$2(v_0+1)-3=x_0+2$	IМ	substituting two particular
			Y.		values of y which differ by 1
∴ x	will be increased by 2	if y is increased	d by 1.	1M	, , , , , , , , , , , , , , , , , , , ,
		*		(4)	
7.	y_{\uparrow}	(a)	The coordinates of A and B		
[T	- 1	T	are $(-1, 5)$ and $(4, 3)$ resp.	1A	Irrespective of order
			•		Accept writing on the diagram
,	6	(b)	Slope of $AB = \frac{5-3}{1}$	1M	*
$\stackrel{A}{=}$			-1-4	11,17	
	4		Equation of AB :		
	4	D	$\frac{y-3}{4} = -\frac{2}{5}$	1M	
		<i>B</i> *	$ x-4 \qquad 5 \\ 2x+5y-23=0 $	1A	or aquinalant
	-2			1A	or equivalent
	2		$y = -\frac{2}{5}x + \frac{23}{5}$		
			3 3	(4)	
				(4)	
-2.	0 2	$\frac{1}{4}$ \times \times			
. (a) N	New price = $(\$)80 \times (1+)$	200/)		1.4	
. (a) 1	= \$96	2070)		1A	1.6
	= \$90			1A	<i>u</i> −1 for missing unit
(b) F	Peter pays: (\$)96	<(1-20%)		1M	
	= \$76.8	` ,		1A	u-1 for missing unit
	÷ : • • • •			(4)	
				·	
001. CE MA	COVE 4 A				

Solution		Marks	Remarks	
9. $\angle ABC = 60^{\circ}$ Using sine rule,		1A	Can be absorb	ed below
$\frac{AB}{\sin 50^{\circ}} = \frac{8 \text{ (cr)}}{\sin 50^{\circ}}$	50°	1M		
8 cm / AB ≈ 7.0764 ≈ 7.08 cr		1A	r.t. 7.08, u-1	for missing unit
	$\frac{1}{2}$ (8)(7.07642) sin 70° (cm ²)	i		
$A \longrightarrow B \approx 20$	26.6 cm ²	1A (5)	r.t. 26.6, u-1	for missing unit
10. (a) Score (x) Class mid-value (Class mark)				
$44 \le x < 52$ 48 52 $\le x < 60$ 56	9			
$60 \le x < 68 $	15			
$76 \le x < 84$	2	1A+1A+1A (3)	1A for each co	lumn
(b) Mean = 64 Standard deviation = 8		1A 1A		
76-64	T e	(2)		
(c) Standard score = $\frac{76-64}{8}$ = 1.5		1M 1A		
(d) Let her score in the second test be y , then		(2)		
$\frac{y-58}{10} = 1.5$		1M		:
<i>y</i> = 73		1A (2)		:

-			_	
	-	Solution	Marks	Remarks
11.		P B C D Q D' R C		
(a)		P = x (cm), $(x-x)^2 + 6^2 = x^2$	1A	Can be absorbed below or written on the diagram
		$4 - 24x + x^2 + 36 = x^2$	1A 1A (3)	u-1 for writing $x = 7.5$ cm
(b)	(L2) (L3) Si (L4) an (L5) :	Δ s PBA' and $A'CR$, (i) $\angle PBA' = \angle A'CR = 90^{\circ}$ nce $\angle A'PB + 90^{\circ} + \angle BA'P = 180^{\circ}$ (\angle sum of Δ) d $\angle RA'C + 90^{\circ} + \angle BA'P = 180^{\circ}$ (adj. \angle s on st. line) (ii) $\angle A'PB = \angle RA'C$ ence $\Delta PBA' \sim \Delta A'CR$ (AAA)		[Δ內角和] [直線上的鄰角] (equiangular), (AA)
		Scheme:		[等角]
	Case 1	Any correct proof with correct reasons.	3	
		Any correct proof without reasons. In addition, any relevant correct argument with correct reason – L3, L4 or L6 (at most 1 mark)	1	At most 2 marks
	Case 3	Any relevant correct argument with correct reason – L2, L3 or L4 (at most 1 mark)	1	At most 1 mark
(c)	$\frac{A'A'}{A'C}$ $\frac{y}{6} = y = y$	y cm and use the result of (b), $\frac{R}{C} = \frac{PA'}{PB}$ $= \frac{7.5}{12 - 7.5}$ $= 10 \text{ cm}$	1M 1A(2)	u–1 for missing unit
2001 CE	MATH 1_6			

Solution	Marks	Remarks
12. (a) (i) Perimeter of $F_{40} = [10 + (40-1) \times 1]$ (cm) = 49 cm	1A 1A	u−1 for missing unit
(ii) The sum of the perimeters of the 40 figures $= [40 \times \frac{10+49}{2}] \text{ (cm)} \qquad [40 \times \frac{2 \times 10 + (40-1) \times 1}{2}] \text{ (cm)}$ $= 1180 \text{ cm}$	1M 1A (4)	<i>u</i> −1 for missing unit
(b) (i) Area of $F_2 = \left[4 \times \left(\frac{11}{10}\right)^2\right]$ (cm²) = 4.84 cm² $\left[\frac{121}{25} \text{ cm}^2\right]$	1M 1A	Using the square of linear ratio r.t. 4.84, $u-1$ for missing unit
(ii) Area of $F_3 = 4 \times \left(\frac{12}{10}\right)^2$ (cm ²) = 5.76 (cm ²) \therefore Area of F_2 - Area of $F_1 \neq$ Area of F_3 - Area of F_2 (0.84 cm ² \neq 0.92 cm ²) \therefore the areas of figures F_1, F_2, \dots, F_{40} do not form an arithmetic sequence.	1M	
	(4)	

DEC. 24.			UNLT
	Solution	Marks	Remarks
13. (a)	Let $S = at + bt^2$ for some non-zero constants a and b . Solving $\begin{cases} 33 = a + b \\ 56 = 2a + 4b \end{cases}$, we have $a = 38 \text{ and } b = -5$ $\therefore S = 38t - 5t^2$	1A 1M 1A	For substituting one pair of no - zero values of S and t
<i>(</i> 1-)		(3)	
(b)	10+ /161	1M	
	$t = 1.26 \text{ or } 6.34$ $\frac{19 \pm \sqrt{161}}{5}$	1A (2)	r.t. 1.26, 6.34
(c)	S		
	70		
	50		
	40		
	30		
	20 10 10 10 10 10 10 10 10 10 10 10 10 10	1A+1M	1A for the 8 pts., ±½ grid line. 1M for the curve, joining at least 6 pts. smoothly
	From the graph, S is greatest when $t \approx 3.8$.	1A (3)	Accept $3.6 - 3.9$, read from the graph
			0 1
		1	

Solution					Marks	Remarks		
						7.24710		
14.	(a)	(i)	x	f(x)				
			1	0				w.
			1.05	-0.0237				
			1.1	0.0105				
			35 (6) (3) (5)					
			1.15	0.111			1A	r.t0.02, 0.01
		(::)	France (1) the			17	10.6	
		(ii)	Using the meth	root nes in the od of bisectior	interval [1.05, 1.	1].	1M	Can be absorbed in the table below
			а	ь	a+b	f(m)		
			[f(a) < 0]	[f(b) > 0]	2		13.6	
			1.0500	1.1000 1.1000	1.0750 1.0875	-0.0144 -0.0039	1M 1M	Testing sign of mid-value Choosing the correct interval
			1.0875	1.1000	1.0938	0.0028	1111	Choosing the correct interval
			1.0875	1.0938	1.0907	-0.0006		
			1.0907	1.0938 1.0923	1.0923 1.0915	0.0011		
			1.0907	1.0915				
				h < 1.0915	decimal places)		1A	f.t.
			x ~ 1.071	(correct to 3 t	icciniai piaces)		(5)	1.1.
	(b)	The	given conditions	s lead to the ea	uation			
	(0)					000(1+r%) = 5000	1M+1A	1M for compound interest
			x = 1 + r%, then					1 F
			$1000x^4 + 1000$		1000x = 5000			
			$x^4 + x^3 + x^2 +$	x = 5				
			$\frac{x(x^4-1)}{1}=5$				1M+1A	1M for sum of the sequence
			x-1 x5-x=5x-5					•
			$x^5 - 6x + 5 = 0$					
		Fron	x = 0.091				1M	Using the result of (a)(ii)
		i.e.	$r \approx 9.1$				1A	f.t.
							(6)	
							. ,	
		١,						
		* .						
								:
								·
							1	

2001-CE-MATH 1-10

	F Solution	Marks	Remarks
16.	x cm A' B		
D	6 cm		
G^{2}	A A E		
(a) In the	ne trapezium BCDE,		
	height = $x \sin 60^{\circ}$ (cm) $\frac{\sqrt{3}}{2}x$ (cm)] 1A	For either, can be absorbed below
	CD = (6 - x) (cm)]	
\therefore	$\frac{6 + (6 - x)}{2} \times \frac{\sqrt{3}}{2} x = 5\sqrt{3}$	1A	
	$\frac{\sqrt{3}(12-x)x}{4} = 5\sqrt{3}$		
	$2\left(\frac{1}{2}x^2\sin 60^\circ\right) + 5\sqrt{3} + \frac{1}{2}(6^2)\sin 60^\circ = \frac{1}{2}(x+6)^2\sin 60^\circ$	1A+1A	1A for the area of one triangle 1A for all
	$2x^2 + 20 + 36 = (x+6)^2$		
	$x^2 - 12x + 20 = 0$	1	
	(x-2)(x-10) = 0 x = 2 or $x = 10$ (rejected)	1A (4)	Accept " $x = 2$ only" u-1 for writing $x = 2$ cm
/1 \ / \ / \	$410^2 - 16^2 + 2^2 - 26660 = 4001 = 6$		
(b) (i)	$A'D^2 = [6^2 + 2^2 - 2(6)(2)\cos 40^\circ] \text{ (cm}^2)$ $\approx 21.6149 \text{ (cm}^2)$	1M	en de la companya de La companya de la co
	$A'D \approx 4.6492 \text{ (cm)}$ $\approx 4.65 \text{ cm}$	1A	r.t. 4.65, $u-1$ for missing unit
(ii)	Let M , N be the mid-points of EB and DC respectively, then $A'M = 6 \sin 60^{\circ} \text{ (cm)} = 3\sqrt{3} \text{ (cm)}$,		
	$MN = 2 \sin 60^{\circ} \text{ (cm)} = \sqrt{3} \text{ (cm)}$, and		
	$A'N = \sqrt{A'D^2 - DN^2}$		the form of the
	$\approx \sqrt{21.6149 - 2^2}$ (cm) $\approx \sqrt{17.6149}$ (cm) 4.197 (cm)	1M	19.0
\	≈ $\sqrt{17.6149}$ (cm) 4.197 (cm) The angle between the planes <i>BCDE</i> and <i>A'BE</i> is $\angle A'MN$.	1A	
	$\cos \angle A'MN \approx \frac{(3\sqrt{3})^2 + (\sqrt{3})^2 - 17.6149}{2(3\sqrt{3})(\sqrt{3})}$		
	≈ 0.6881 $\angle A'MN \approx 46.5^{\circ}$	1A	r.t. 46.5, u –1 for missing unit
(iii)	Required volume = $\frac{1}{3}$ (area of trapezium <i>CDEB</i>)($A'M \sin \angle A'MN$)		
	$\approx \frac{1}{3} (5\sqrt{3})(3\sqrt{3} \sin 46.5^{\circ}) \text{ (cm}^3)$	1M	
	$\approx 10.9 \text{ cm}^3$	1A (7)	r.t. 10.9 , $u-1$ for missing unit
2001 CE MATI	; :		A second of the second

	Solution	Marks	Remarks
17. (a) (i)	Centre = $\left(\frac{p}{2}, 0\right)$, radius = $\frac{p}{2}$	1A+1A	Can be absorbed below
	Equation of the circle <i>OPS</i> : $\left(\frac{y}{x}\right)\left(\frac{y}{x-p}\right) = -1$ $x(x-p) + y^2 = 0$	2A	
0	$x(x-p) + y^{2} = 0$ $\left(x - \frac{p}{2}\right)^{2} + y^{2} = \left(\frac{p}{2}\right)^{2}$ $x^{2} + y^{2} - px = 0$ $x^{2} + y^{2} - px + pa - a^{2} - b^{2} = 0$	1A	
	Let the equation of the circle <i>OPS</i> be $x^2 + y^2 + Dx + Ey + F = 0$, F = 0		
	then $\begin{cases} p^{2} + pD + F = 0 \\ a^{2} + b^{2} + aD + bE + F = 0 \end{cases}$	1A	for anyone
	which gives $F = 0$, $D = -p$ and $E = -\frac{a^2 + b^2 - pa}{b}$.	1A	for any two being correct
	$\therefore \text{ the equation is } x^2 + y^2 - px - \frac{a^2 + b^2 - pa}{b} y = 0.$	1A	-
(a) (ii)	∴ S lies on the circle <i>OPS</i> , ∴ $a^2 + b^2 - pa = 0$	1 M	Sub. (a, b) into eqtn. in (a)
	Since $OS \perp SP$, $\therefore \left(\frac{b}{a-p}\right)\left(\frac{b}{a}\right) = -1$ or $a^2 + b^2 - pa = 0$.	1M	
	$OR = OQ \cos \angle POQ$ Using Park and Till	1A	
	Using Pythagoras' Theorem, $OS^2 = a^2 + b^2$ $= pa$	1 A	
	$= OP \cdot OR$ $= OP \cdot OQ \cos \angle POQ$	1	·
	Since $\cos \angle SOR = \frac{OR}{OS} = \frac{OS}{OP}$	1M+1A	1M for considering cos ∠SOR or the similar triangles
N ₁	$OR = OQ \cos \angle POQ$ $OS^2 = OP \cdot OR$	1A	
* * * * * * * * * * * * * * * * * * *	$= OP \cdot OQ \cos \angle POQ$	[]	
	Using cosine rule, $OP \cdot OQ \cos \angle POQ$ = $\frac{1}{2} \left(OP^2 + OQ^2 - PQ^2 \right)$	1A	Cosine rule
	$= \frac{1}{2} \left[\left(OS^2 + PS^2 \right) + \left(OR^2 + QR^2 \right) - \left(QR^2 + PR^2 \right) \right]$	1M	Pythagoras' Theorem
	$= \frac{1}{2} \left(OS^2 + PS^2 + OR^2 - PR^2 \right)$	1A	
	$= \frac{1}{2} \left[OS^2 + \left(PR^2 + RS^2 \right) + \left(OS^2 - RS^2 \right) - PR^2 \right]$		
	$= OS^2$	1	
001-CE-MATH		(7)	

Solution Solution	Marks	Remarks
$(b) \qquad \qquad E \qquad \qquad D \qquad \qquad B$		
 (i) ∴ BC is a diameter of the circle BCEF, ∴ ∠BEC = 90° (∠ in semicircle) i.e. BE is an altitude of ΔABC. (ii) Since the points C, A, B, G and E are defined analogously the points O, P, Q, S and R in (a), ∴ CG² = CA · CB cos ∠ACB. Similarly, AD is also an altitude of ΔABC and CF² = CB · CA cos ∠ACB. 	1A	[半圓上的圓周角] Stating that BC is a diameter or using ∠ in semicircle
Hence $CG = CF$.	1(4)	