只限教師參閱 FOR TEACHERS' USE ONLY

香港考試及評核局 HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY

2002年香港中學會考 HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 2002

數學 試卷一 MATHEMATICS PAPER 1

本評卷參考乃香港考試及評核局專爲今年本科考試而編寫,供閱卷員參考之用。閱卷員在完成閱卷工作後,若將本評卷參考提供其任教會考班的本科同事參閱,本局不表反對,但須切記,在任何情況下均不得容許本評卷參考落入學生手中。學生若索閱或求取此等文件,閱卷員/教師應嚴詞拒絕,因學生極可能將評卷參考視爲標準答案,以致但知硬背死記,活剝生吞。這種落伍的學習態度,既不符現代教育原則,亦有違考試着重理解能力與運用技巧之旨。因此,本局籲請各閱卷員/教師通力合作,堅守上述原則。

This marking scheme has been prepared by the Hong Kong Examinations and Assessment Authority for markers' reference. The Authority has no objection to markers sharing it, after the completion of marking, with colleagues who are teaching the subject. However, under no circumstances should it be given to students because they are likely to regard it as a set of model answers. Markers/teachers should therefore firmly resist students' requests for access to this document. Our examinations emphasise the testing of understanding, the practical application of knowledge and the use of processing skills. Hence the use of model answers, or anything else which encourages rote memorisation, should be considered outmoded and pedagogically unsound. The Authority is counting on the co-operation of markers/teachers in this regard.

考試結束後,各科評卷參考將存放於教師中心,供教師參閱。 After the examinations, marking schemes will be available for reference at the teachers' centre.

©香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2002

2002-CE-MATH 1-1

只限教師參閱 FOR TEACHERS' USE ONLY

Hong Kong Certificate of Education Examination Mathematics Paper 1

General Marking Instructions

- 1. It is very important that all markers should adhere as closely as possible to the marking scheme. In many cases, however, candidates will have obtained a correct answer by an alternative method not specified in the marking scheme. In general, a correct answer merits *all the marks* allocated to that part, unless a particular method has been specified in the question. Makers should be patient in marking alternative solutions not specified in the marking scheme.
- 2. In the marking scheme, marks are classified into the following three categories:

'M' marks

awarded for correct methods being used;

'A' marks

awarded for the accuracy of the answers;

Marks without 'M' or 'A'

awarded for correctly completing a proof or arriving

at an answer given in a question.

In a question consisting of several parts each depending on the previous parts, 'M' marks should be awarded to steps or methods correctly deduced from previous answers, even if these answers are erroneous. However, 'A' marks for the corresponding answers should NOT be awarded (unless otherwise specified).

- 3. For the convenience of markers, the marking scheme was written as detailed as possible. However, it is still likely that candidates would not present their solution in the same explicit manner, e.g. some steps would either be omitted or stated implicitly. In such cases, markers should exercise their discretion in marking candidates' work. In general, marks for a certain step should be awarded if candidates' solution indicated that the relevant concept/technique had been used.
- Use of notation different from those in the marking scheme should not be penalized.
- 5. In marking candidates' work, the benefit of doubt should be given in the candidates' favour.
- 6. Marks may be deducted for wrong units (u) or poor presentation (pp).
 - a. The symbol (u-1) should be used to denote 1 mark deducted for u. At most deduct 1 mark for u for the whole paper.
 - b. The symbol (pp-) should be used to denote 1 mark deducted for pp. At most deduct 2 marks for pp for the whole paper. For similar pp, deduct 1 mark for the first time that it occurs. Do not penalize candidates twice in the paper for the same pp.
 - c. At most deduct 1 mark in each question. Deduct the mark for u first if both marks for u and pp may be deducted in the same question.
 - d. In any case, do not deduct any marks for pp or u in those steps where candidates could not score any marks.
- 7. Marks entered in the Page Total Box should be the NET total scored on that page.
- 8. In the marking scheme, 'r.t.' stands for 'accepting answers which can be rounded off to', 'f.t.' stands for 'follow through' and 'or equivalent' means 'accepting equivalent forms of the equation which has been simplified and without uncollected like terms'. Steps which can be skipped are shaded whereas alternative answers are enclosed with rectangles. All fractional answers must be simplified.

只限教師參閱 FOR TEACHERS' USE ONLY

Solution	Marks	Remarks
$\frac{(ab^2)^2}{a^5} = \frac{(a^2)(b^2)^2}{a^5}$ $= \frac{b^4}{a^{5-2}}$ $= \frac{b^4}{a^{5-2}}$ $= \frac{b^4}{a^{5-2}}$	1M	$(xy)^n = x^n y^n$ $\frac{x^m}{x^n} = x^{m-n}$
$=\frac{b^4}{a^3}$ $=\frac{b^4}{a^3}$	1A	x"
<i>a a a a a a a a a a</i>	(3)	,
$Area = \frac{120}{360} \cdot \pi(6)^2$	1M + 1A	1M for $\frac{120}{360}$, 1A for area of
$= 12\pi \text{ cm}^2$	1A	circle u-1 for missing unit
The angle at the centre is $120 \times \frac{\pi}{180} = \left(\frac{2\pi}{3}\right)$	1A	
$Area = \frac{1}{2} \cdot \frac{2\pi}{3} \cdot 6^2$	1M	120°
$= 12\pi$ cm ²	1A (3)	u-1 for missing unit 6 cm
(a) $\tan \theta = \frac{80}{100}$	1A	North Q
$\theta \approx 38.66^{\circ} \approx 38.7^{\circ}$ (Accept $\theta = 0.675$)	1A	u-1 for missing unit r.t. 38.7°
(b) The bearing of <i>P</i> from <i>Q</i> is $90^{\circ} + 38.7^{\circ} = 128.7^{\circ} \approx 129^{\circ}$ S 51.3° E.	1M 1M	80 m u-1 for missing unit u-1 for missing unit
	(3)	$O \xrightarrow{100 \text{ m}} P >$
(a) $f(2) = 2^3 - 2(2)^2 - 9(2) + 18$ = 0	1A	
(b) $x-2$ is a factor of $f(x)$.		2
$f(x) = (x-2)(x^2-9)$ $= (x-2)(x-3)(x+3)$	1M 1A (3)	for $f(x) = (x-2)(ax^2 + bx + c)$
(a) Mean = $\frac{4+4+5+6+8+12+13+13+13+18}{10} = 9.6$	1A	
(b) Mode = 13	1A	
(c) Median = $\frac{8+12}{2}$ = 10	1A	
(d) Standard deviation = 4.59	1A	r.t. 4.59
	(4)	

	Solution	Marks	Remarks
6. (a)	The radius of the new circle is 8(1.1) = 8.8 cm The area of the new circle is	1A	can be absorbed
	$\pi (8.8)^2 = 77.44 \pi \text{ cm}^2$	1A	u-1 for missing unit
(b)	The percentage increase in area is $ \frac{77.44 \pi - 64 \pi}{64 \pi} \times 100\% $ $ \frac{1.1^2 - 1}{1} \times 100\% $	1M	222271 2211 2 1000/
	= 21% $= 21%$ $= 21%$ $= 21%$	1A	accept without 100%
		(4)	
. (a)	$3x + 6 \ge 4 + x$ $2x \ge -2$		
(b)	$x \ge -1$ For $2x - 5 < 0$,	1A	
(0)	$x < \frac{5}{2} .$	1A	
	Hence $-1 \le x < \frac{5}{2}$	1A	can be absorbed
	The required integers are -1 , 0 , 1 , 2 .	1A (4)	,,
(a)	The coordinates of A are $(-8, 0)$		
, ,	The coordinates of B are $(0, 4)$	1A 1A	B
(b)	Let the coordinates of the mid-point of AB be (x, y) .		
	$x = \frac{-8+0}{2} = -4$ $0+4$	1 M	A O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	$\begin{array}{c c} y = & 2 \\ \hline 2 & & \end{array}$ $\therefore \text{The mid-point is } (-4, 2) .$	1A	•
		(4)	
	$\angle BAC = 40^{\circ}$	1A	
∵	$AB = AC$ $\angle ABC = \frac{180^{\circ} - 40^{\circ}}{2}$ $\angle ACB = \frac{180^{\circ} - 40^{\circ}}{2}$		A
	$=70^{\circ}$ $=70^{\circ}$ $=70^{\circ}$	1 A	40°
∵ ∴	BD is a diameter $\angle BCD = 90^{\circ}$ $\angle ACD = 90^{\circ} - 70^{\circ}$	1A	
<i>:</i> .	$\angle CBD = 90^{\circ} - 40^{\circ} = 50^{\circ}$ $= 20^{\circ}$	1A 1A	
∴.	$\angle ABD = \angle ABC - \angle CBD$ $= 70^{\circ} - 50^{\circ}$ $\angle ABD = \angle ACD$		B C
	= 20°	1A (5)	u-1 for missing unit

		Solution		Ma	ırks	Remarks
0. (a)	: :	$AB = AC$ $\angle B = \frac{180^{\circ} - 20^{\circ}}{2} = 80^{\circ}$		1	A	Å
	∵ ∴ ∴	$BC = CE$ $\angle CEB = \angle B = 80^{\circ}$ $\angle BCE = 180^{\circ} - 80^{\circ} - 80^{\circ} = 20^{\circ}$		11	M	20°
	∴ 	$\angle ECF = \angle ACB - \angle BCE$ = 60° CE = EF		1)	М	
	∵ ∴	$\angle CE = EF$ $\angle CEF = 60^{\circ}$		1.	A (4)	u-1 for missing unit
(b)		$\angle DEF = 180^{\circ} - 60^{\circ} - 80^{\circ}$ $= 40^{\circ}$ $EF = FD$	(adj. ∠s on st. line) [直線上的鄰	角]	
	∴ In ∠	$\angle FDE = \angle DEF$ = 40° $\triangle ADF$,	(base \angle s of isos. \triangle)	[等腰△底角]		B = C
		$\angle DFA = 40^{\circ} -20^{\circ}$ = 20° = $\angle DAF$	$(\operatorname{ext} \angle \operatorname{of} \Delta) \qquad [$	∆的外角]		
		$\angle DFE = 180^{\circ} - 40^{\circ} - 40^{\circ}$ = 100°	$(\angle \operatorname{sum} \operatorname{of} \Delta)$			[△內角和]
	··	$\angle AFD = 180^{\circ} - 100^{\circ} - 60^{\circ}$ $= 20^{\circ}$ $\angle DFA = \angle DAF$	(adj. ∠s on st. line)			[直線上的鄰角]
		$\angle CEF = 60^{\circ}$ $\angle CFE = 60^{\circ}$	(by (a))			
		$\angle AEF = 60^{\circ} - 20^{\circ} = 40^{\circ}$ $\therefore \angle EDF = 40^{\circ}$ $\therefore \angle AFD = 40^{\circ} - 20^{\circ}$ $= 20^{\circ}$	$(\operatorname{ext} \angle \operatorname{of} \Delta)$ $(\operatorname{base} \angle \operatorname{s} \operatorname{of} \operatorname{isos.} \Delta)$ $(\operatorname{ext} \angle \operatorname{of} \Delta)$			[Δ的外角] [等腰Δ底角] [Δ的外角]
	÷	AD = DF	(base \angle s of $\Delta =$)			[等角對邊相等] [底角相等] [等邊對等角] [等角對等邊 [等腰∆底角等的逆定理]
	Ma	arking Scheme :				
	Ca	se 1 Any correct proof with co	orrect reasons.	3		
	Ca	se 2 Any correct proof withou	t reasons.	2		
	Ca	se 3 Incomplete proof with an $\angle DFE$) and with correct	y one correct angle (e.g. $\angle AE$ reason.	F, 1		
					(3)	

(a) Let $A = aP + bP^2$, where a and b are constants. Sub. $P = 24$, $A = 36$,		1A	
24a + 576b = 36 $2a + 48b = 3$ (1))		
Sub. $P = 18$, $A = 9$, 18a + 324b = 9 2a + 36b = 1(2)	}	1M	for substitution (either)
Solving (1) and (2) $a = -\frac{5}{2}$ $b = \frac{1}{6}$ $A = -\frac{5}{2}P + \frac{1}{6}P^{2}$	}	1A	for both
		(3)	
(b) (i) When $A = 54$, $-\frac{5}{2}P + \frac{1}{6}P^{2} = 54$ $P^{2} - 15P - 324 = 0$		1M	
P = 27 or $P = -12$ (rejected) \therefore the required perimeter is 27 cm.		1 A	
(ii) Let P' cm be the perimeter of the gold bookmark. $\left(\frac{P'}{27}\right)^2 = \frac{8}{54}$ $P' = 6\sqrt{3} \ (\approx 10.4)$	•	1M+1A 1A	$1M \text{ for } \left(\frac{P'}{P}\right)^2 = \frac{8}{54}$ r.t. 10.4
The perimeter of the gold bookmark is $6\sqrt{3}$ (≈ 10.4) cm.		(5)	

		Solution		Marks	Remarks
a)					
a .7	- L C 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
N	umber of books read (x)		Award		
	$0 < x \le 5$	66	Certificate		
	$5 < x \le 15$	34	Book coupon	h	
	$15 < x \le 25$	64	Bronze medal	► 1A	for both
	$25 < x \le 35$	26	Silver medal	Ц	
	$35 < x \le 50$	10	Gold medal		
				(1)	
b) L	ower quartile = 3.8				
U	pper quartile = 22.8				
Ir	nter-quartile range = 22.8	- 3.8		1M	$(22 \rightarrow 23) - (3 \rightarrow 4)$
	= 19			1A	r.t. 19
· ·	S			(2)	
c) (i	The number of partici 64 + 26 + 10 = 10	pants who won medals,			
		pants who won gold medals i	s 10.		
	The probability that the	ney both won gold medals		1	
	$=\frac{10}{100}\times\frac{9}{99}$				1M for $\frac{p}{q} \times \frac{p-1}{q-1}$, where p
					q q-1
	$=\frac{1}{110}$				1A 0.00909
-	110				
(i					
	$P_1 = \frac{64}{100} \times \frac{63}{99} =$	112)		0.4073
	Both won silver meda		>	1A	for both
	$P_2 = \frac{26}{100} \times \frac{25}{99} =$			171	
			J	·	0.06566
		ey won different medals			
	$=1-\frac{1}{110}-\frac{112}{275}$	$-\frac{13}{198}$		2M	for $1-(c)(i)-P_1-P_2$
	$=\frac{1282}{2475}$			1 A	0.518
	24/3				
	$P(B \text{ and } S) = \frac{64}{100} \times \frac{2}{9}$	$\frac{6}{2} \times 2$			
	100				
	$P(B \text{ and } G) = \frac{64}{100} \times \frac{1}{9}$	$\frac{0}{9} \times 2$			
	26 1	^			
	$P(S \text{ and } G) = \frac{26}{100} \times \frac{1}{9}$	$\frac{6}{9} \times 2$			
	P(different medals) = 1	P(B and S) + P(B and G) + P(B and G)	S and G)	2M+1A	2M for sum of three different ca
					$(P_1' \times 2 + P_2' \times 2 + P_3' \times 2)$
	= -	<u>1282</u> 2475		1A	0.518
		2413			
			ľ	(6)	
	°H 1–7			(6)	

只限教師參閱

FOR TEACHERS' USE ONLY

		Solution	Marks	Remarks
13.	(a)	Area of $\Delta C_1 C_2 C_3 = \frac{1}{2} (1)(1) \sin 60^\circ$	1A	
		$=\frac{\sqrt{3}}{4}\mathrm{m}^2$	1A	u-1 for missing unit
			(2)	
	(b)	Each side of a smaller triangle = $\frac{1}{3}$ m		,
		Area of each smaller triangle = $\frac{1}{2} (\frac{1}{3})(\frac{1}{3}) \sin 60^\circ = \frac{\sqrt{3}}{36} \text{ m}^2$		
		Total area = $4 \times \frac{\sqrt{3}}{36} + \frac{\sqrt{3}}{4}$	1M+1M	1M for 4 times, 1M for + (a)
		$=\frac{13\sqrt{3}}{36}\mathrm{m}^2$	1A	u-1 for missing unit
			(3)	
	(c)	The area $= \frac{\sqrt{3}}{4} + \frac{4}{9} \times \frac{\sqrt{3}}{4} + \left(\frac{4}{9}\right)^2 \times \frac{\sqrt{3}}{4} + \left(\frac{4}{9}\right)^3 \frac{\sqrt{3}}{4} + \cdots$	1M + 1A	lM for G. P.
		$\frac{4}{\sqrt{3}}$ $\frac{9}{4}$ $\frac{4}{9}$ $\frac{4}{4}$ $\frac{9}{4}$ $\frac{4}{9}$		
		$=\frac{4}{1-\frac{4}}{1-\frac{4}{$	1M	for $\frac{a}{1-r}$
		$= \frac{\frac{\sqrt{3}}{4}}{1 - \frac{4}{9}}$ $= \frac{9\sqrt{3}}{20} \text{ m}^2$	1A	y 1 for missing wit
		20	IA	u-1 for missing unit
		The area		
		$=\frac{\sqrt{3}}{4}$	2M+1A	2M for $\frac{(a)}{1-\frac{4}}{1-\frac{4}{1-\frac{1-\frac{4}}{1-\frac{4}}}}{1-\frac{4}{1-\frac{4}{1-\frac{4}{1-\frac{4}{1-\frac{4}{1-\frac{4}{1-1$
		$\begin{vmatrix} 1-\frac{1}{9} \\ 9\sqrt{3} \end{vmatrix}$		9
		$=\frac{9\sqrt{3}}{20}\mathrm{m}^2$	1A	u–1 for missing unit
			~	
2002	-CE-M	1ATH 1_8	•	

	Solution	Marks	Remarks
	$r = \frac{h}{\tan 20^{\circ}}$ m and $BT = \frac{h}{\tan 15^{\circ}}$ m.	1A	u-1 for missing unit for both $AT = 2.75 h \text{ m}$ and $BT = 3.73 h \text{ m}$
	$BT^{2} = AB^{2} + AT^{2} - 2AB \cdot AT \cos 30^{\circ}$ $\left(\frac{h}{\tan 15^{\circ}}\right)^{2} = 900^{2} + \left(\frac{h}{\tan 20^{\circ}}\right)^{2} - 2(900)\left(\frac{h}{\tan 20^{\circ}}\right)\cos 30^{\circ}$	1M+1A	
	$\left(\frac{1}{\tan^2 15^\circ} - \frac{1}{\tan^2 20^\circ}\right)h^2 + \frac{900\sqrt{3}}{\tan 20^\circ}h - 810000 = 0$	1M	in the form of $ah^2 + bh + c = 0$
	<i>h</i> ≈153.86 ≈154	1A (5)	r.t. 154
(b) (i)	ES is minimum when $SE \perp AB$ (or $TE \perp AB$).		
	When $TE \perp AB$, $ET = AT \sin 30^\circ = \frac{h \sin 30^\circ}{\tan 20^\circ} (\approx 211.36)$	1 M	
	Shortest distance = $\sqrt{h^2 + (AT \sin 30^\circ)^2}$	1M	$\sqrt{153.86^2 + 211.36^2}$
	$= h\sqrt{1 + \left(\frac{\sin 30^{\circ}}{\tan 20^{\circ}}\right)^2}$		S
	≈ 261.43 ≈ 261 m.	1,4	h m u-1 for missing unit (accept 26)
		20° 30°	T E 15°
	A	.	900 m
A	$dS = \frac{h}{\sin 20^{\circ}} \approx 449.86 \text{ and } SB = \frac{h}{\sin 15^{\circ}} \approx 594.48 .$,
co	$\cos \angle SAB = \frac{\left(\frac{h}{\sin 20^{\circ}}\right)^{2} + (900)^{2} - \left(\frac{h}{\sin 15^{\circ}}\right)^{2}}{2\left(\frac{h}{\sin 20^{\circ}}\right)(900)} \approx 0.8138.$	1M	
	$CSAB = 35.53^{\circ}$ nortest distance = $AS \sin \angle SAB$	1M	accept $\angle SBA = 26.09^{\circ}$
	$\approx \left(\frac{h}{\sin 20^{\circ}}\right) \sin 35.53^{\circ}$		
	≈ 261 m	1A	(Accept 262 m)
(ii)	$\therefore \tan \theta = \frac{h}{FT}$	(3)	
	θ is maximum when $TE \perp AB$.	1M	can be omitted
	$\tan \theta_{\text{max}} = \frac{h}{AT \sin 30^{\circ}}$	·	$\tan \theta = \frac{h}{ET} = \frac{153.86}{211.36}$
	$=\frac{\tan 20^{\circ}}{\sin 30^{\circ}}$		$\sin \theta = \frac{h}{ES} = \frac{153.86}{261.43}$
	Maximum value of $\theta \approx 36.1^{\circ}$	1A	$\cos\theta = \frac{ET}{ES} = \frac{211.36}{261.43}$
	Hence $15^{\circ} \le \theta \le 36.1^{\circ}$.	1A	ES 261.43 u–1 for missing unit
Γ	Accept using $\cos \theta = \frac{ET}{ES} = \frac{211.4}{261.4}$, $\theta \approx 36.0^{\circ}$		(Accept $\theta \approx 36.2^{\circ}$)

	フトPR 4X 日中 参 PRI T ON TEACHER	Г	T
· · · · · · · · · · · · · · · · · · ·	Solution	Marks	Remarks
5. (a) (i)	Total amount of water = $\frac{1}{3}\pi \cdot 9^2 \cdot 24 = 648\pi$ cm ³		
	Volume of water in the cylinder = $\pi \cdot 6^2 h = 36\pi h \text{ cm}^3$		
	Volume of water in the cone = $\frac{1}{3}\pi \cdot 9^2 \cdot 24 \cdot \left(\frac{h+5}{24}\right)^3$ cm ³	1M+1A	1M for $V = V' \cdot \left(\frac{h+5}{24}\right)^3$
	Let r cm be the radius of the water surface in the cone when water is being poured into the cylinder.		
	Then $\frac{r}{h+5} = \frac{9}{24}.$	1A	
	Volume of water remains in the cone $\pi \begin{bmatrix} 3 & 3\pi & 3\pi \end{bmatrix}$.*
	$= \frac{\pi}{3} \left[\frac{3}{8} (h+5) \right]^2 (h+5) = \frac{3\pi}{64} (h+5)^3 \text{ cm}^3.$	1M	
	$\therefore \frac{3\pi}{64} (h+5)^3 + 36\pi h = 648\pi$	1M	$\left[\frac{1}{3}\pi \cdot 9^2 \cdot 24 \cdot \left[1 - \left(\frac{h+5}{24} \right)^3 \right] = \pi \cdot 6^2 h$
	$1 - \left(\frac{h+5}{24}\right)^3 = \frac{h}{18}$		
	$h^{3} + 15h^{2} + 75h + 125 = 768(18 - h)$ $h^{3} + 15h^{2} + 75h + 125 + 768h = 13824$	1A	for expanding $(h+5)^3$
	$h^3 + 15h^2 + 843h - 13699 = 0$	1	
(ii)	Let $f(h) = h^3 + 15h^2 + 843h - 13699$ f(11) = -1280 < 0 and $f(12) = 305 > 0The value of h lies between 11 and 12.$	1M	can be absorbed
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1M	Testing sign of mid-value
	11.5 12 11.75 -101 11.75 12 11.875 +101 11.75 11.875 11.8125 +0.224	1M	Choosing the correct interval
	11.75 11.8125		
	∴ $11.75 < h < 11.8125$ $h \approx 11.8$ (correct to 1 decimal place)	1A (9)	f.t.
if t	the situation in Figure 9(b) is the same as the situation in Figure 9(a) the lower part (5 cm height) of the water of the cone is ignored. The depth of water in the frustum is	·	
	<i>h</i> cm ≈ 11.8 cm	2M (2)	2M for the answer in (a)(ii) u-1 for missing unit

		Solution		Marks	Remarks
(6) (2)	I 4.40	D and A EOD			
. (a) (1)		$D \text{ and } \Delta FOB$, = $\angle FOB = 90^{\circ}$	(ai)		
			(given)		[已知]
		$AEB = 90^{\circ}$	(∠ in semicircle)	İ	[半圓上的圓周角]
	∴ ∠l	$DAO = 90^{\circ} - \angle ABE$	$(\angle \text{ sum of } \Delta)$		[Δ內角和]
		other hand,			
		$BFO = 90^{\circ} - \angle ABE$	$(\angle \text{ sum of } \Delta)$		 [Δ内角和]
	∴. ∠1	$DAO = \angle BFO$	` ,		[-1 3/ 3/14]
		$\Delta AOD \sim \Delta FOB$	(AAA)		「笠色」 (AA) (aguian gular)
	,		(1111)		[等角] (AA) (equiangular)
	Marking Sc				
	Case 1 A	ny correct proof with correct	reasons.	3	·
		ny correct proof without reason		2	
C		ncomplete proof with any one	correct angle and	1	1
	CC	orrect reason.		1	
(ii)) In Δ <i>AO</i>	G and ΔGOB ,			
\ " <i>\</i>		$= \angle GOB = 90^{\circ}$	(given)		[日本日]
		$GB = 90^{\circ}$			
			(∠ in semicircle)		[半圓上的圓周角]
	∠A0	$GO = 90^{\circ} - \angle BGO$	- · ·		
		$= \angle GBO$	$(\angle sum of \Delta)$		[Δ内角和]
	Thus, $\Delta \lambda$	$AOG \sim \Delta GOB$	(AAA)		[等角] (AA) (equiangular)
		1			
	larking Sc ase 1 A	heme: ny correct proof with correct r	reaconc		
		ny correct proof without reason		2	
	11	ily correct proof without reason	ль.	1	
		OD OR			
(iii)) Hence	$\frac{OD}{OA} = \frac{OB}{OF}$			
	a :	$OD \cdot OF = OA \cdot OB$) 1	either one
	Since	$\Delta AOG \sim \Delta GOB$			either one
	<i>:</i> .	$OA _ OG$			
				1 1	
	• •	$\overline{OG} - \overline{OB}$		J	
		$\frac{OA}{OG} = \frac{OG}{OB}$) 	
	i.e.	$OA \cdot OB = OG^2$.		<i>J</i>	
		2		J 1	
	i.e.	$OA \cdot OB = OG^2$.		1(7)	
(b) (i)	i.e. Thus	$OA \cdot OB = OG^2$. $OD \cdot OF = OA \cdot OB = OG^2$			
(b) (i)	i.e. Thus $A = (c - a)$	$OA \cdot OB = OG^2$. $OD \cdot OF = OA \cdot OB = OG^2$ (r, 0) and $(c + r, 0)$			
(b) (i)	i.e. Thus $A = (c - a)$	$OA \cdot OB = OG^2$. $OD \cdot OF = OA \cdot OB = OG^2$ (r, 0) and $(c + r, 0)$			
(b) (i)	i.e. Thus $A = (c - r)$ $m_{AD} = \frac{1}{r}$	$OA \cdot OB = OG^{2}$. $OD \cdot OF = OA \cdot OB = OG^{2}$ (r, 0) and $(c + r, 0)(r, 0)$		(7)	
(b) (i)	i.e. Thus $A = (c - r)$ $m_{AD} = \frac{1}{r}$	$OA \cdot OB = OG^{2}$. $OD \cdot OF = OA \cdot OB = OG^{2}$ (r, 0) and $(c + r, 0)(r, 0)$		(7)	
	i.e. Thus $A = (c - r)$ $m_{AD} = \frac{1}{r}$ $m_{BF} = -r$	$OA \cdot OB = OG^{2}$. $OD \cdot OF = OA \cdot OB = OG^{2}$ (r, 0) and $(c + r, 0)(r, 0)$ and $(c + r, 0)$		(7)	
	i.e. Thus $A = (c - r)$ $m_{AD} = \frac{r}{r}$ $m_{BF} = -$ $\therefore \angle AB$	$OA \cdot OB = OG^2$. $OD \cdot OF = OA \cdot OB = OG^2$ (r, 0) and $(c + r, 0)(r, 0)$ and $(c + r, 0)$		(7)	[半圓上的圓周角]
	i.e. Thus $A = (c - r)$ $m_{AD} = \frac{r}{r}$ $m_{BF} = -$ $\therefore \angle AB$	$OA \cdot OB = OG^2$. $OD \cdot OF = OA \cdot OB = OG^2$ (r, 0) and $(c + r, 0)(r, 0)$ and $(c + r, 0)$		1A	[半圓上的圓周角]
	i.e. Thus $A = (c - r)$ $m_{AD} = \frac{r}{r}$ $m_{BF} = -$ $\therefore \angle AB$	$OA \cdot OB = OG^{2}$. $OD \cdot OF = OA \cdot OB = OG^{2}$ (r, 0) and $(c + r, 0)(r, 0)$ and $(c + r, 0)$		(7)	[半圓上的圓周角] F
	i.e. Thus $A = (c - r)$ $m_{AD} = \frac{r}{r}$ $m_{BF} = -$ $\therefore \angle AB$	$OA \cdot OB = OG^2$. $OD \cdot OF = OA \cdot OB = OG^2$ (r, 0) and $B = (c + r, 0)\frac{p}{r - c}\frac{q}{r + c}EB = 90^\circ (\angle in semi circle)m_{AD} \cdot m_{BF} = \frac{p}{r - c} \cdot \left(-\frac{q}{r + c} \right)$		1A	[半圓上的圓周角]
	i.e. Thus $A = (c - r)$ $m_{AD} = -\frac{r}{r}$ $m_{BF} = -\frac{r}{r}$ $\therefore \angle AB$	$OA \cdot OB = OG^2$. $OD \cdot OF = OA \cdot OB = OG^2$ r, 0) and $B = (c + r, 0)\frac{p}{r - c}\frac{q}{r + c}EB = 90^\circ (\angle in semi circle)m_{AD} \cdot m_{BF} = \frac{p}{r - c} \cdot \left(-\frac{q}{r + c} \right)pq = r^2 - c^2$		1A	[半圓上的圓周角] F
	i.e. Thus $A = (c - R)$ $m_{AD} = \frac{1}{r}$ $m_{BF} = -\frac{1}{r}$ $\therefore \angle AB$ \therefore Since	$OA \cdot OB = OG^2$. $OD \cdot OF = OA \cdot OB = OG^2$ (r, 0) and $B = (c + r, 0)\frac{p}{r - c}\frac{q}{r + c}EB = 90^\circ (\angle in semi circle)m_{AD} \cdot m_{BF} = \frac{p}{r - c} \cdot \left(-\frac{q}{r + c} \right)pq = r^2 - c^2pq = OD \cdot OF$	-)=-1	1A	[半圓上的圓周角] <i>F G E</i>
	i.e. Thus $A = (c - R)$ $m_{AD} = \frac{1}{r}$ $m_{BF} = -\frac{1}{r}$ $\therefore \angle AB$ \therefore Since	$OA \cdot OB = OG^2$. $OD \cdot OF = OA \cdot OB = OG^2$ (r, 0) and $B = (c + r, 0)\frac{p}{r - c}\frac{q}{r + c}EB = 90^\circ (\angle in semi circle)m_{AD} \cdot m_{BF} = \frac{p}{r - c} \cdot \left(-\frac{q}{r + c} \right)pq = r^2 - c^2pq = OD \cdot OF$	-)=-1	1A	F
	i.e. Thus $A = (c - r)$ $m_{AD} = -\frac{r}{r}$ $m_{BF} = -\frac{r}{r}$ $\therefore \angle AR$ \therefore Since and	$OA \cdot OB = OG^{2}.$ $OD \cdot OF = OA \cdot OB = OG^{2}$ $r, 0) \text{ and } B = (c+r, 0)$ $\frac{p}{r-c}$ $\frac{q}{r+c}$ $EB = 90^{\circ} (\angle \text{ in semi circle})$ $m_{AD} \cdot m_{BF} = \frac{p}{r-c} \cdot \left(-\frac{q}{r+c}\right)$ $pq = r^{2} - c^{2}$ $pq = OD \cdot OF$ $r^{2} - c^{2} = CG^{2} - OC^{2} = OC^{2}$	-)=-1	(7) 1A 1A	F
	i.e. Thus $A = (c - r)$ $m_{AD} = -\frac{r}{r}$ $m_{BF} = -\frac{r}{r}$ $\therefore \angle AR$ \therefore Since and	$OA \cdot OB = OG^2$. $OD \cdot OF = OA \cdot OB = OG^2$ (r, 0) and $B = (c + r, 0)\frac{p}{r - c}\frac{q}{r + c}EB = 90^\circ (\angle in semi circle)m_{AD} \cdot m_{BF} = \frac{p}{r - c} \cdot \left(-\frac{q}{r + c} \right)pq = r^2 - c^2pq = OD \cdot OF$	-)=-1	(7) 1A 1A 1M	F
	i.e. Thus $A = (c - r)$ $m_{AD} = -\frac{r}{r}$ $m_{BF} = -\frac{r}{r}$ $\therefore \angle AR$ \therefore Since and	$OA \cdot OB = OG^{2}.$ $OD \cdot OF = OA \cdot OB = OG^{2}$ $r, 0) \text{ and } B = (c+r, 0)$ $\frac{p}{r-c}$ $\frac{q}{r+c}$ $EB = 90^{\circ} (\angle \text{ in semi circle})$ $m_{AD} \cdot m_{BF} = \frac{p}{r-c} \cdot \left(-\frac{q}{r+c}\right)$ $pq = r^{2} - c^{2}$ $pq = OD \cdot OF$ $r^{2} - c^{2} = CG^{2} - OC^{2} = OC^{2}$	-)=-1	(7) 1A 1A	F
	i.e. Thus $A = (c - r)$ $m_{AD} = -\frac{r}{r}$ $m_{BF} = -\frac{r}{r}$ $\therefore \angle AR$ \therefore Since and	$OA \cdot OB = OG^{2}.$ $OD \cdot OF = OA \cdot OB = OG^{2}$ $r, 0) \text{ and } B = (c+r, 0)$ $\frac{p}{r-c}$ $\frac{q}{r+c}$ $EB = 90^{\circ} (\angle \text{ in semi circle})$ $m_{AD} \cdot m_{BF} = \frac{p}{r-c} \cdot \left(-\frac{q}{r+c}\right)$ $pq = r^{2} - c^{2}$ $pq = OD \cdot OF$ $r^{2} - c^{2} = CG^{2} - OC^{2} = OC^{2}$	-)=-1	(7) 1A 1A 1M	F
	i.e. Thus $A = (c - r)$ $m_{AD} = -\frac{r}{r}$ $m_{BF} = -\frac{r}{r}$ $\therefore \angle AR$ \therefore Since and	$OA \cdot OB = OG^{2}.$ $OD \cdot OF = OA \cdot OB = OG^{2}$ $r, 0) \text{ and } B = (c+r, 0)$ $\frac{p}{r-c}$ $\frac{q}{r+c}$ $EB = 90^{\circ} (\angle \text{ in semi circle})$ $m_{AD} \cdot m_{BF} = \frac{p}{r-c} \cdot \left(-\frac{q}{r+c}\right)$ $pq = r^{2} - c^{2}$ $pq = OD \cdot OF$ $r^{2} - c^{2} = CG^{2} - OC^{2} = OC^{2}$	-)=-1	(7) 1A 1A 1M	G E
	i.e. Thus $A = (c - r)$ $m_{AD} = -\frac{r}{r}$ $m_{BF} = -\frac{r}{r}$ $\therefore \angle AR$ \therefore Since and	$OA \cdot OB = OG^{2}.$ $OD \cdot OF = OA \cdot OB = OG^{2}$ $r, 0) \text{ and } B = (c+r, 0)$ $\frac{p}{r-c}$ $\frac{q}{r+c}$ $EB = 90^{\circ} (\angle \text{ in semi circle})$ $m_{AD} \cdot m_{BF} = \frac{p}{r-c} \cdot \left(-\frac{q}{r+c}\right)$ $pq = r^{2} - c^{2}$ $pq = OD \cdot OF$ $r^{2} - c^{2} = CG^{2} - OC^{2} = OC^{2}$	-)=-1	(7) 1A 1A 1M	G E

Solution	Marks	Remarks
Equation of L_1 : $\frac{y-9k}{x} = -\frac{9}{5}$ $9x+5y = 45k$	1M	$\frac{x}{5k} + \frac{y}{9k} = 1$
Equation of L_2 : $\frac{y-5k}{x} = -\frac{5}{12}$ $5x+12y = 60k$	1A	$\frac{x}{12k} + \frac{y}{5k} = 1$ for both equations
	(2	1
(b) (i) Let x and y be respectively the number of articles produced by lines A and B . The constraints are		. /
$\int 45x + 25y \le 225 \qquad \text{(or } 9x + 5y \le 45),$	1A	withhold 1 mark for strict inequal
$\begin{cases} 50x + 120y \le 600 & \text{(or } 5x + 12y \le 60\text{)}, \\ x \text{ and } y \text{ are non-negative integers.} \end{cases}$	1A	
The profit is $$1000(3x+2y)$.	1A	
Using the graph in Figure 11 with $k = 1$, the feasible solutions are represented by the lattice points in the shaded region below.		
<i>y</i> ^		
(0, 9)		·
3x + 2y = a		
(0,5)		
4		
3		
2		N
$O = \begin{pmatrix} 1 & 2 & 3 & 4 \\ & & & & & \\ & & & & & \\ & & & & &$		x
From the graph, the most profitable combinations are (3, 3) and (5,0)		
At $(3, 3)$, the profit is $$1000 (9 + 6) = 15000		
At $(5, 0)$, the profit is $$1000 (15 + 0) = 15000 At $(0, 5)$, the profit is $$1000 (10) = 10000	134	Tasking
At $(0, 3)$, the profit is \$ 1 000 $(10) = $10 000$ At $(2, 4)$, the profit is \$ 1 000 $(6 + 8) = $14 000$	1M	Testing
The greatest possible profit is \$15000.	1A	u-1 for missing unit
		-

