1(80) Find the value of x in Figure

(80) In Figure TA and TB touch the circle at A and B respectively. $\angle ACB = 65^{\circ}$. Find the value of x.

(5 marks)

3.(80)

Figure

In Figure , AB = AC, AD = AE, Lx = Ly. Straight lines BD and CE intersect at K.

(a) Prove that $\triangle ABD$ and $\triangle ACE$ are congruent.

(5 marks)

(b) Prove that ABCK is a cyclic quadrilateral.

(3 marks)

(c) Besides the quadrilateral ABCK, there is another cyclic quadrilateral in the figure. Write it down (proof is not required).

(2 marks)

4.(80) In $\triangle ABC$ (see Figure), $BD = \frac{1}{4}AB$, $CE = \frac{1}{3}AC$, BE intersects CD at P. $\triangle x = \triangle y$.

Prove that

- (a) $\triangle EMC$ and $\triangle ADC$ are similar and $EM = \frac{1}{4} AB$, (4 marks)
- (b) $\triangle BDP$ and $\triangle EMP$ are congruent. (2 marks)
- (c) PM = CM. (2 marks)
- (d) area of triangle BDP is half the area of triangle PEC.

Figure

Figure

A, B and C are three points on the line OX such that OA = 2, OB = 3 and OC = 4. With A, B, C as centres and OA, OB, OC as radii, three semi-circles are drawn as shown in Figure . A line OY cuts the three semi-circles at P, Q, R respectively.

(a) If $\angle YOX = \theta$, express $\angle PAX$, $\angle QBX$ and $\angle RCX$ in terms of θ .

(3 marks)

(b) Find the following ratios:

area of sector OAP: area of sector OBQ: area of sector OCR,

(4 marks)

(c) If $RD \perp OX$, calculate the angle θ .

(3 marks)

6(81) In Figure 7, circles PMQ and QNR touch each other at Q. QT is a common tangent. PQR is a straight line. TP and TR cut the circles at M and N respectively.

Figure

(a) If $\angle P = x$ and $\angle R = y$, express $\angle MQN$ in terms of x and y. (2 marks)

(b) Prove that Q, M, T and N are concyclic. (3 marks)

(c) Prove that P, M, N and R are concyclic. (4 marks)

(d) There are several pairs of similar triangles in the figure.

Name any two pairs (no proof is required). (3 marks)

In Figure , O is the centre of the circle BAD. BOC and ADC are straight lines.

9(82)

7(81)

If $LADO = 50^{\circ}$ and $LACB = 20^{\circ}$,

find x, y and z.

(6 marks)

Figure

Prove that (a) $LAPB = 90^{\circ}$,

(b)
$$CP = DP$$

$$AC + BD = 0$$

(c)
$$AC + BD = AB$$

8(8|) In Figure , O is the centre of circle ABC. $\angle LOAB = 40^{\circ}$

Calculate L BCA

A straight line passing through P meets AX and BY at C and D respectively. In Figure , AX # BY. AP and BP bisect LXAB and LYBA respectively, and they meet at P.

(3 marks)

Is CB a tangent to the circle at B? Give a reason for your answer. <u>.</u>

In Figure , $\triangle ADB$ and $\triangle ACE$ are equilateral triangles. DC and BE intersect at F.

(a) Prove that DC = BE. [Hint: Consider $\triangle ADC$ and $\triangle ABE$.]

(4 marks)

- (b) (i) Prove that A, D, B and F are concyclic.
 - (ii) Find LBFD.

(4 marks)

(c) Let the mid-points of DB, BC and CE be X, Y and Z respectively. Find the angles of ΔXYZ .

12(82)

In Figure , two circles touch internally at T. TR is their common tangent. AB touches the smaller circle at S. AT and BT cut the smaller circle at P and Q respectively. PQ and ST intersect at K.

(a) Prove that $PQ \mid AB$.

(4 marks)

(b) Prove that ST bisects $\angle ATB$.

(4 marks)

(c) $\triangle STQ$ is similar to four other triangles in Figure 7. Write down any three of them. (No proof is required.)

(4 marks)

Figure

In Figure , AP and AQ touch the circle BCD at B and D respectively. $\angle PBC = 30^\circ$ and $\angle CDQ = 80^\circ$. Find the values of x, y and z.

14(85)

Figure

In Figure , PB touches the circle ABC at B. PAC is a straight line $\angle ABC = 60^{\circ}$. AP = AB. Find the value of x.

15(86)

In Figure , TAE and TBF are tangents to the circle ABC. If $LATB = 30^{\circ}$ and AC / TF, find x and y.

(5 marks)

16(86)

Figure

In Figure , A , B and C are three points on the circle. CT is a

(a) Name a triangle which is similar to $\triangle BCT$.

tangent and ABT is a straight line.

(b) Let BT = x, AB = 17 and $CT = 10\sqrt{2}$. Find x.

(6 marks)

17(87)

Figure

In Figure, O is the centre of the circle. AOCP is a straight line, PB touches the circle at B, BA = BP and $\angle PAB = x^{\circ}$. Find x.

(6 marks)

25.

- (88)(a) P is a point inside a square ABCD such that PBC is an equilateral triangle. AP is produced to meet CD at Q.
- Draw a diagram to represent the above information.
- Ξ Calculate $\angle PAB$ and $\angle PQC$.

(7 marks)

- 3 In Figure , CT is tangent to the circle ABT.
- Find a triangle similar to $\triangle ACT$ and give reasons.
- Ξ If CT = 6 and BC = 5, find AB

Figure

19(89)

D

Figure

 $LACD = 60^{\circ}$ and $LACB = 40^{\circ}$ In Figure , ABCD is a cyclic quadrilateral with AD = 10 cm,

- $\mathbf{\Xi}$ Find LABD and LBAD.
- 3 Find the length of BD in cm, correct to 2 decimal places.

AB is a diameter of a circle and M is a point on the circumference. C is a point on BM produced such that BM = MC.

- Ξ Draw a diagram to represent the above information

(b) Show that AM bisects LBAC

(6 marks)

Figure

isosceles triangle with AB = AC. In Figure , AB is a diameter of the circle ADB and ABC is an

- (a) Prove that $\triangle ABD$ and $\triangle ACD$ are congruent.
- The tangent to the circle at D cuts AC at the point E. Prove that $\triangle ABD$ and $\triangle ADE$ are similar.

E

(2 marks)

(3 marks)

- <u>ි</u> In (b), let AB = 5 and BD = 4.
- Find DE.
- CA is produced to meet the circle at the point F. Find AF.

(7 marks)

marks)

Figure 7

In Figure 7, A, B are the centres of the circles DEC and DFC respectively. ECF is a straight line.

(a) Prove that triangles ABC and ABD are congruent.

(3 marks)

- (3
- (b) Let $\angle FED = 55^{\circ}$, $\angle ACB = 95^{\circ}$.
- (i) Find $\angle CAB$ and $\angle EFD$.
- (ii) A circle S is drawn through D to touch the line CF at F.
- (1) Draw a labelled rough diagram to represent the above information.
- (2) Show that the diameter of the circle S is 2DF. (9 marks)

1. $\chi^{\circ} + 3\chi^{\circ} = (2\chi + 40)^{\circ}$

(ext. Ls.)

$$x+3x=2x+40$$

2x = 40

2.

Let O be the centre of circle.

$$\angle AOB = 2 \angle ACB$$

= 2(65°)
= 130°

A'OBT is cyclic.

$$x = 130$$

IN DABD & DACE

LBAD = LX + LCAD.

DI DINCE . WHBU = MALE. LABD = LACD = La (equal angle, equal arc.)

- AB, C&K are lie on a circle.

:. ABCK is cyclic quadrilateral.

c, Besides ABCK, AEDK is also eyelic quadrilateral.

4.

(2x+40)°

since. Lx = Ly (given) LECH is common.

: DEMC ~ DADC . (A.A.A.)

$$\frac{EM}{AD} = \frac{CE}{AC}$$

$$\frac{EM}{AD} = \frac{1}{3}$$

Since. BD = &AB.

$$\therefore AD = \frac{3}{4}AB.$$

b, In ABDP & DEMP.

LBPD = LEPM (opp. ds.)

LBPP = 180°-LY LEMP = 180°-LX.

: LBDP = LEMP

HENCE , DBDP = DEMP (AA.S.)