SALEM_IMMANUEL LUTHERAN COLLEGE

S5 NSS Mathematics Teaching Schedule (2011 - 2012)

Textbook: New Century Mathematics – Book M2A, M2B (Oxford)				
	Class	5A	5B	
	Teachers	So WS	So WS	

1) . . • •

Schedule:

M2A Chapter 3 – Limits and the Number e

				Teaching
				Materials / Ex./
Date	Objectives	Content	Periods	Remarks
2011	• To understand the concept of the limit	Limit of a	2	Exercise 3A
Summer	of a sequence	Sequence		
	• To understand the concept of	Continuous and	2	Exercise 3B
12 Sep –	continuous and discontinuous	Discontinuous F		
16 Sep	functions, and learn how to distinguish	unctions		
Revision	them from their graphs	Theorem on	4	Exercise 3C
	• To recognize the continuity of some	Limits		
	special functions from their graphs	Limits at Infinity	2	Exercise 3D
	• To learn various theorems on limits of	T	2	
	a function at a certain value	Logarithmic	2	
	• To learn finding the limit of a function	Equations		
	$\sin x$	Trigonometric	3	
	by two special limits: $\lim_{x \to 0} \frac{\sin x}{x}$ and	Equations		
	$e^{x}-1$	Total:	15	
	$\lim_{x \to 0} \frac{1}{x}$			
	• To learn various theorems on limits of			
	a function at infinity and use them to			
	find the limit			

Quiz (1) – So WS

			Period	Teaching Materials
Date	Objectives	Content	s	/ Ex./ Remarks
19 Sep	• To understand the concept and	Derivative of a	2	Exercise 4A
to	definition of the derivative of a	Function		
24 Oct	function and its notations	Basic Rules of	6	Exercise 4B,
	• To learn the process of finding the	Differentiation		4C
	derivatives of some basic functions	Differentiation of	3	Exercise 4D,
	from first principle	Trigonometric,		4E
	• To understand some basic rules of	Exponential and		
	differentiation	Logarithmic		
	• To learn how to find derivatives by	Functions		
	implicit differentiation	Implicit	3	Exercise 4F
	• To understand the technique of	Differentiation		
	logarithmic differentiation	Second Derivative	3	Exercise 4G
	• To understand the meaning of second	T ()	10	
	derivative and its notations	Total:	18	
	• To learn how to find the second			
	derivative of an explicit function			

M2A Chapter 4 – Differentiation

Quiz (2) – So WS

SECOND TERM

M2A Chapter 5 – Applications of Differentiation

				Teaching Materials / Ex./
Date	Objectives	Content	Periods	Remarks
25 Oct	• To find the equations of tangents and	Tangents and	2	Exercise 5A
to	normals to a curve	Normals		
5 Dec	• To understand the concept of increasing and	Maxima and	3	Exercise 5B
	decreasing functions and the concavity of a	Minima		
	function	Point of	4	Exercise 5C
	• To find maximum and minimum points and	Inflexion		
	points of inflexion of functions and identify	Sketching	3	Exercise 5D
	the global extrema	Graph of		
	• To sketch graphs of polynomial functiosn	Rational		
	• To understand the concept of even and odd	Functions		
	functions and to identify symmetry of a	Applications	4	
	curve	of		Exercise 5E
	• To identify the limitations on the values of x	Differentiatio		
	and <i>y</i> in rational functions	n to Practical		
	• To understand the concept of vertical,	Problems		
	horizontal and oblique asymtotes of the	Total:	16	
	graphs of rational functions			
	• To sketch graphs of rational functions			
	• To apply differentiation to solve the			
	problems relating to rate of change,			
	maximum and minimum			

Quiz (3) –So WS

First Term Exam –So WS

M2A Chapter 6 – Indefinite Integration

				Teaching
				Materials / Ex./
Date	Objectives	/ Content	Periods	Remarks
3 Feb	• To understand the concept of indefinite	Concept of	2	Exercise 6A
to	integration as a reverse process of	Indefinite		
8 Mar	differentiation	Integration and		
	• To understand that the primitive function of a	Basic Rules		
	function is not unique and the meaning of the	More Integration	2	Exercise 6B
	notation $\int f(x)dx$	Formulae		
	ficturion j j (x)uu	Applications of	2	Exercise 6C
	• To master the basic rules and properties of	Indefinite		
	indefinite integration and use them to find	Integration		
	simple indefinite integrals of algebraic	Integration by	2	Exercise 6D
	functions	Substitution		
	• To use the basic rules and properties of	Integration	3	Exercise 6E
	indefinite integration to find indefinite	Techniques		
	integrals of other functions	Involving		
	• To apply indefinite integration in finding the	Trigonometric		
	equations of curves and other physical	Functions		
	applications	Integration by	4	Exercise 6F
	• To understand the concept of integration by	Parts		
	substitution and to use this method to find	Total:	15	
	indefinite integrals			
	• To learn some other techniques of integration			
	involving trigonometric functions.			
	• To understand the concept of integration by			
	parts and to use this method to find indefinite			
	integrals.			

Quiz (4) –So WS

				Teaching Materials
Date	Objectives	/ Content	Periods	/ Ex./ Remarks
9 Mar	• To recognize the concept of definite	Concept and	2	Exercise 7A
to	integration as the limit of a sum	Properties of		
7 May	• To understand the properties of definite	Definite Integrals		
	integrals	Fundamental	2	Exercise 7B
	• The Fundamental theorem of Calculus	Theorem of		
	• To find definite integrals of functions.	Calculus		
	• To use integration by substitution to find	Integration by	4	Exercise 7C
	definite integrals	Substitution		
	• To use integration by parts to find	Integration by Parts	3	Exercise 7D
	definite integrals			
	• To understand the properties of the	Other Properties of	3	Exercise 7E
	definite integrals of even, odd and	Definite Integrals		
	periodic functions.	Total:	14	

M2B Chapter 7 – Definite Integration