

Charge delivered = $CV = (10^{-8})(0.18) = 1.8 \times 10^{-9}$ C If this amount is all of the charge in the spoon, then its capacitance = $1.8 \times 10^{-9}/10^3 = 1.8 pF$

Tip: The capacitance of the spoon is only 1/5000 that of the built-in capacitor. Therefore 99.98% of the charge is delivered.

- 2. (a) Current = $59 \mu A$
- (b) Charge in the capacitor = $(59 \times 10^{-6})(45) = 2.66 \times 10^{-3}$ C Capacitance = 2.66×10^{-3} / $5.6 = 470 \mu$ A
- (c) Current leaking through the voltmeter increases. When it is 59 μ A, the voltage becomes steady.

$$V/20 \times 10^3 = 59 \times 10^{-6}$$

 $V = 1.18 \text{ V}$

3. (a) Charge on the capacitor at 1 s =
$$(59 \times 10^{-6})(1) = 59 \times 10^{-6}$$
 C Voltage = $59 \times 10^{-6} / 470 \times 10^{-6} = 0.126$ V

(b) Charge stored at
$$20 \text{ s} = (59 \times 10^{-6})(20) = 1.18 \times 10^{-3} \text{ C}$$

Vertical deflection = 0.126 div

(c) Voltage of capacitor =
$$(0.126)(20) = 2.52 \text{ V}$$

 $R = (6 - 2.52) / 59 \times 10^{-6} = 5.9 \times 10^{4} \Omega$

(d) When the voltage of the capacitor reaches 6 V, a steady current cannot be sustained. Charge in the capacitor at 6 V = $(6)(470 \times 10^{-6}) = 2.82 \times 10^{-3}$ C Time of charging = 2.82×10^{-3} / $59 \times 10^{-6} = 47.8$ s

<u>e</u>

Equivalent capacitance = $470 \times 10^{-6} + C_0$ (from the diagram) If the measured voltage is V, then Q is 470×10^{-6} V, but in fact Q should be $(470 \times 10^{-6} + C_0)$ V.

Thus, a factor of C_0 / 470×10^{-6} should be added to the observed voltage.

(a) If there is no leakage, the relationship between R and t is given by 12 - Q/C = IR with Q = It and V = IR. $V = 12 - (120 \times 10^{-6} / 470 \times 10^{-6})t = 12 - (12 / 47)t$ At t = 47 s, V should be zero.

4.

- (b) Final voltage of capacitor = 12 2.4 = 9.6 VFinal charge stored = $(9.6)(470 \times 10^{-6}) = 4.5 \times 10^{-3} \text{ C}$
- (c) The charge in the capacitor remains constant when the voltage across the capacitor remains constant. All of the 120 μ A current leaks through the capacitor. :: Leakage resistance = $9.6/120 \times 10^{-6} = 80 \text{ k}\Omega$
- (a) Since $C = \varepsilon_0 A / d$, A decreases as C decreases. V (= Q / C) will increase. The capacitor discharges and the pointer 'kicks' in the opposite direction.

5

(b) Since $C = \varepsilon \varepsilon_0 A / d$, inserting a dielectric sheet increases C. V then decreases and more charge flows into the capacitor. The pointer 'kicks' in the original direction.

6. $C = \varepsilon \varepsilon_0 A / d = (6)(8.85 \times 10^{-12})(100 \times 10^{-4}) / 0.1 \times 10^{-3}$ $= 5.3 \times 10^3 \text{ pF}$

Tip: The answer is seldom written as 5.3×10^{-9} F. The two commonly used units of capacitance are μ F or pF, thus write it as $5.3 \times 10^{-3} \mu$ F or 5.3×10^{3} pF.

.7 (a)

<u>G</u>

<u>O</u>

œ

b If Y_1 and E are interchanged, the capacitance is shorted and the circuit is as shown in the diagram.

Capacitors and Capacitance

 $Y_1 = 0$ and $Y_2 = voltage$ of the battery

Tip: Thus, there are restrictions on the connections of Y_1 , Y_2 and E when using a double-beam CRO.

(a) Initial charge = $CV_0 = (470 \times 10^{-6})(4.7) = 2.2 \times 10^{-3} \text{ C}$

9.

9 From the figure, Q drops to 1/e of its original value in 28 s.

$$R = 28 / 470 \times 10^{-6} = 5.96 \times 10^{4} \Omega$$

- 10. (a) Increase Q_0 . $I_0 = Q_0 C / R$
- 9 Increase C. $I_0 = V_0 / R = V_0 C^2 \sqrt{2} / (RC \sqrt{2}) = V_0 C^2 \sqrt{2} / t_{1/2}$
- 11. (a) Time of discharge = $(1 / 400) / 2 = 1.25 \times 10^{-3} \text{ s}$ $V = V_0 \exp(-t / RC) = 20.15 \text{ V}$ Time constant of the RC circuit = $(580 \times 10^{-12})(10 \times 10^6)$ $= 5.8 \times 10^{-3} \text{ s}$
- <u></u> Current registered = charge passed through in 1 s $= (400)(25 - 20.15)(580 \times 10^{-12})$ $= 1.13 \mu A$
- <u>O</u> $\exp(-t/RC) = (V_0 - V)/V_0 = 1 - 0.99$ t / RC = 4.61 with $t = 1.25 \times 10^{-3}$ $R=470~\mathrm{k}\Omega$

12. Time of discharge = 0.5×10^{-3} s

Minimum value of $RC = (400 \times 10^3)(580 \times 10^{-12}) = 2.32 \times 10^{-4} \text{ s}$

(a)

Capacitors and Capacitance

 \therefore Time of discharge = 2.2 RC

Fraction of charge left = $\exp(-2.2) = 0.11$

be discharged. A switching frequency of 1 kHz is not practical since only 89% of the charge would

13. (a) Time of charging = (1/50)/2 = 10 ms

Time constant of the charging circuit = $(2 \times 10^{-6})(5 \times 10^{3}) = 10$ ms

 $V = 6 \exp [(1 - (1/e)] = 3.8 \text{ V}$

<u>G</u> Time constant of the discharging circuit = $(2 \times 10^{-6})(10^4) = 20$ ms

 $V = 3.8 \exp(-10/20) = 2.3 \text{ V}$

<u>0</u>

14. (a) Time constant of the circuit = $(4700 \times 10^{-6})(10^4) = 47 \text{ s}$ $Q = (4700 \times 10^{-6})(9) \exp(-20/47)$

<u>B</u> V = Q / C = 5.88 V

 $= 2.76 \times 10^{-2} \text{ C}$

(c)
$$V_R = V_C = 5.88 \text{ V}$$

(d) $I = 5.88 / (10 \times 10^3) = 588 \,\mu\text{A}$

- 15. *11 μ*Α 200 100
- i.e. when $I = 0.37 \times 190 = 70 \mu A$, is 4.8 s. The time for the current to fall to 1/e of the initial value,

 $: C = 4.8 / R = 102 \mu F$

<u>0</u> R must be ten-times larger for the time constant to be measurable.

16. (a) Initial current = 25 / 500 = 50 mA

ਭ Time for the initial current to drop to 10 mA is t, where t is given by $10 = 50 \exp (-t / RC)$.

 $t = (1.61)(500)(4700 \times 10^{-6})$

17. (a) Equivalent capacitance of the 100 μ F and the 220 μ F capacitors $= 100 + 220 = 320 \ \mu \text{F}$

470 μF capacitor = $[(320 \times 10^{-6})^{-1} + (470 \times 10^{-6})^{-1}] = 190 \ \mu F$ Equivalent capacitance of the 320 μF capacitor and the

9 Voltage ratio of the 470 and 320 μF capacitors = 320 / 470 . Voltage across the 220 μF capacitor = 3.57 V Voltage across the 470 μ F capacitor = (6)(320)/(320 + 470) = 2.43 VSum of the two voltages = 6 V

respectively 0.64 mJ, 1.40 mJ and 1.39 mJ. Energy = $CV^2/2$, thus the energy stored in the 100, 220 and 470 μ F capacitors is

18.

(a) Equivalent capacitance between $SQ = 13.3 + 10 = 23.3 \mu F$ = $[(40 \times 10^{-6})^{-1} + (20 \times 10^{-6})^{-1}] = 13.3 \ \mu F$ Equivalent capacitance of the 40 and 20 μ F capacitors

 V_{PS} / V_{SQ} = 23.3 / 30 and V_{PQ} = 600 V $V_{SQ} = 338 \text{ V}$

 V_{SH} / V_{HK} = 20 / 40 and V_{SK} = 338 V $V_{HK} = 225.3 \text{ V}$

(b) The 40 μ F capacitor.

Tip: In (b), the equivalent circuit is shown.

Verify that $V_{HK} = 300 \text{ V}$.

19. (a)

Capacitors and Capacitance

Total charge = $(100 \times 10^{-6})(9) = 900 \mu C$ Final charge on the $100 \, \mu \mathrm{F}$ capacitor

 $= 158 \mu C$ $= (100 / 570)(900 \times 10^{-6})$

= 900 - 158Final charge on the $470\,\mu\text{F}$ capacitor

 $= 742 \mu C$

<u>o</u> $= 158 \times 10^{-6} / 100 \times 10^{-6}$ P.d. across the capacitor

<u>a</u> $= (158 \times 10^{-6})(1.58)$ $= 125 \mu J$ Energy stored in the 100 μ F capacitor

Energy stored in the 470 μF capacitor

 $= (742 \times 10^{-6})^2 / 470 \times 10^{-6}$

- <u>e</u> It takes about 5RC to complete the discharge, i.e. $\sim 40 \times 10^{-3}$ s Time constant = $(0.1)(82.5 \times 10^{-6}) = 8.25 \times 10^{-6}$ s Equivalent capacitance = $[(100 \times 10^{-6})^{-1} + (470 \times 10^{-6})^{-1}] = 82.5 \ \mu\text{F}$
- \mathfrak{S} Some energy is dissipated in resistive heating in the wire

Tip: The figure shows the equivalent circuit in (e) wire

20. (a)

$$Q_1 = \begin{array}{c|c} + & + \\ \hline & 10 \ \mu \text{F} & 47 \ \mu \text{F} \end{array} \qquad Q_2$$

$$Q_{10} = (10 \times 10^{-6})(9) = 90 \ \mu\text{C}$$

$$Q_{20} = (47 \times 10^{-6})(6) = 282 \ \mu\text{C}$$

Total charge = $372 \mu C$

At equilibrium,
$$Q_1 / Q_2 = 10 / 47$$

$$Q_1 = 65 \mu C$$
, $Q_2 = 307 \mu C$

$$V_1 = V_2 = 65 \times 10^{-6} / 10 \times 10^{-6} = 6.5 \text{ V}$$

Initial energy =
$$[90 \times 10^{-6})(9) + (282 \times 10^{-6})(6)]/2$$

= 1.251×10^{-3} J

Final energy =
$$(372 \times 10^{-6})(6.5) / 2$$

= 1.209×10^{-3} J

Energy dissipated =
$$42 \mu J$$

(b) Total charge =
$$282 - 90 = 192 \mu C$$

 $Q_1 = (10/57)(192) = 33.7 \mu C$
 $Q_2 = 192 - 33.7 = 158.3 \mu C$

2

$$V_1 = V_2 = 33.7 \times 10^{-6} / 10 \times 10^{-6} = 3.37 \text{ V}$$

Final energy =
$$(192 \times 10^{-6})(3.37) / 2$$

= 0.3235×10^{-3} J

Energy dissipated = 930 μ J

21. (a) When it is fully charged, the voltage across it is 9 V.
Energy stored =
$$\int V dQ = \int (Q/C) dQ = Q^2/2C = CV^2/2$$

= $(4700 \times 10^{-6})(9)^2/2 = 0.19 \text{ J}$

(b) Energy dissipated in resistor =
$$R[I^2 dt = (V^2 / R)] \exp(-2t / RC) dt$$

= $V^2 C / 2 - 0.19 J$

<u>o</u> Total energy output = $QV = QC^2 = 0.38 \text{ J}$

Tip: Note the relationships among the results of the three parts.